• Title/Summary/Keyword: 비축대상

Search Result 183, Processing Time 0.024 seconds

Follower Effect of the Axisymmetric Shells under External Pressure (축대칭 쉘 구조물에 작용하는 외압의 부가효과)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.195-202
    • /
    • 2004
  • The shell due to the effect of initial normal pressures on the shell surface was based on the assumption that the directions of the pressures are always normal to the undeformed shell surface, and that the change in the surface area of the shell is negligible. But the fact that the pressure are always normal to the deforming surface leads "follower force". The follower effect in the analysis can significantly alter the solution for natural frequency and buckling load as compared to the case when the direction of the pressures are assumed to be normal to the uniform shell surface. The expression for the part of strain energy contribution from normal pressure due to the effect of follower force was derived and added to the element stiffness matrix of axisymmetric shell. In the case of increasing external pressure, the natural frequencies decrease until one of them reaches zero. Theoretically the smallest applied load that reduces the frequency of any mode to zero, will have same magnitude as that of the buckling load. In order to determine the bucking load of the shell a few sets of frequencies are computed and the results considering the follower effects are well with the exact solution while the case without that are quite different. But in case of hemispherical dome, there are little difference in buckling pressure between with and without the effect of follower force.

EFFECTS OF THE RING CURRENT ON ULF WAVES IN THE MAGNETOSPHERE (지구자기구의 극초저주파수 파에 대한 RING CURRENT의 효과)

  • 김관혁;이동훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.93-106
    • /
    • 1994
  • A three-dimensional box model has been developed to study the MHD wave coupling in the magnetosphere. In this model, the effects of the ring current are included by assuming the pressure gradients in the MHD equations. It is found that the axisymmetric ring current may play an important role in producing spectral noises in compressional waves, while field line resonances have no such disturbances. These results may explain the current observational characteristics that compressional cavity modes hardly appear in the satellite experiment, while field line resonances often occur. Our numerical resluts also suggest that any discrete spectral peaks such as the global cavity modes can hardly occur where the pressure distribution of the ring current becomes important. The continuous band of transverse waves is found to be unperturbed until the ring current becomes significantly asymmetric with respect to the dipole axis. In addition, our results in the absence of the pressure gradient are found to be consistent with the previous results from the box-like and dipole models.

  • PDF

'Comb-Structure' Model for the Shear Analysis of Partially Prestressed Concrete Beams (부분(部分) 프리스트레스트 콘크리트 들보의 전단해석을 위한 '빗 구조' 모델)

  • Kang, Won Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 1992
  • In this study, the 'Comb-structure' model which has been developed from truss analogy is modified in order to be applied to the shear analysis of partially prestressed concrete members. The proposed 'Comb-structure' model is modified so that the position, the slope of concrete compressive chord and the slope of concrete diagonal strut may change according to the magnitude of loads and prestress. For the proposed mechanical model, non-linear beam and truss elements are used. By modifying the 'Compression-Field' theory, the equation to determine the slope angle of concrete diagonal strut can be induced. The anaysis results by the proposed 'Comb-structure' model are compared with the experimental results and validity of model is examined. It shows that the the result of 'Comb-structure' analysis lies between that of the modified M$\ddot{o}$rsch theory and classical M$\ddot{o}$rsch theory, and close to the measured value after cracking. The deflection of the beam and the stress of stirrup show good agreement, so it can be concluded that the proposed 'Comb-structure' analysis model explains the shear behavior of partially prestressed concrte beams after crack initiation.

  • PDF

Finite element analysis of unconstrained axisymmetric piercing (구속이 없는 축대칭 피어싱 공정의 유한요소해석)

  • 양동열;유요한;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.876-888
    • /
    • 1986
  • The Study is concerned with the analysis of unconstrained axisymmetric piercing as a nonsteady forging process by the rigid-plastic finite element method. In the numerical analysis of axisymmetric piercing, the initial velocity field is generated by assuming the material as a linear viscous material to begin with in order to facilitate the input handling and to ensure better convergencey. The strain-hardening effect for nonsteady deformation and the friction of the die-material interial interface are considered in the formulation. Rigid body treatment is also incorporated in the developed program. The experiments are carried out for aluminum alloy specimens (A1204) with different specimen heights. It is shown that the experimental results are in excellent agreement with the finite element simulations is deformed configuration. For load prediction the theoretical prediction shows excellent agreement with th eexperimental laod in the initial stage of loading before fracture of the specimen is not initiated. Distribution of stresses, strains and strain rates has been found for the given cases in computation. On this basis several fracture criteria are introduced in order to check the fracture initiation. It is found that maximum shear criterion is capable of good fracture prediciton.

Laboratory Experiments on Rotating Two-layered Fluid in Circular Annulus (Circular Annulus 대 회전 이층유체 실험)

  • Hwang, Byong-Jun;Na, Jung-Yul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.10-17
    • /
    • 1999
  • The purpose of this study is to investigate the baroclinic response of the upper-layer of two-layered fluid when the lower-layer motion is driven by pumping an external fluid into the lower-layer or by pumping out the lower-layer fluid. Recent observations of the barotropic nature of deep water movements in the East Sea (fakematsu et al., 1994; KORDI, 1997) may suggest a possibility of interaction between the upper and lower layer via interface tilting. For homogeneous fluid, steady and axisymmetric source or sink causes axisymmetric geostrophic flow, and the lower-layer motion in two-layered fluid was similar to homogeneous flow. But as Rossby number (${\varepsilon}$) or internal Froude number ($f_2$) increases, the lower-layer motion was affected by the interface tilting. The interface tilting calculated based on the observed azimuthal velocities of upper- and lower-layers becomes greater as $f_2$ increases. In other words, the increase of the $f_2$ changes the barotropic system to baroclinic system.

  • PDF

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF

A Numerical Simulation of Unsteady Axisymmetric Turbulent Flow in a Reciprocating Engine Including Port/Valve Assembly (축대칭 왕복엔진의 비정상 난류유동에 대한 수치해석)

  • 조진행;유홍선;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.139-149
    • /
    • 1994
  • A numerical simulation of unsteady axisymmetric turbulent flow was performed for a reciprocating engine including port/valve assembly. The governing equations based on a nonorthogonal coordinate formulation with Cartesian velocity components were used and discretised by the finite volume method with non-staggered variable arrangements. The modified $\kappa-\xi$. turbulence model which included the effect of compressibility was used. The results of twodimensional transient calculation for the axisymmetric configuration were compared with the experimental data. Although slightly low rms velocity was predicted compared to the experimental data, predicted velocity distributions at the valve exit and in-cylinder region showed good agreements with the experimental data. The flow at the valve exit was separated at the same valve lift position with the experimental data. Two vortices incylinder region were generated during the initial intake process. The clockwise main vortex became strong and moved upward to the top wall. The counter-clockwise second vortex became weak and stick to the upper left corner of the cylinder. After middle intake process, new vortex adjacent to upper cylinder wall appeared by the piston motion and therefore, the in-cylinder flow was formed into three vortices. The cylinder pressure just before bottom dead center of piston was higher than inlet pressure and then the reverse flow occured at the valve exit. The in-cylinder flow characteristics were strongly dependent on piston motion, but insensitive to valve motion.

Forward Projection Using Fuzzy Logic in Axisymmetric Finite Element Simulation for Cold Forging (축대칭 냉간단조의 유한요소해석에서 퍼지로직을 이용한 전방투사법)

  • 정낙면;이낙규;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1468-1484
    • /
    • 1992
  • In the present paper forward projection is proposed as a new approach to determine the preform shape in rib-web type forging. In the forward projection technique an optimal billet is determined by applying some mathematical relationship between geometrical trials in the initial billet shape and the final products. In forward projection a volume difference between the desired product shape and the final computed shape obtained by the rigid-plastic finite element method is used as a measure of incomplete filling of working material in the die. At first linear inter-/extrapolation is employed to find a proper trial shape for the initial billet and the method is successfully applied to some cases of different aspect ratios of the initial billet. However, when the initial guesses are not sufficiently near the optimal value linear inter-/extrapolation does not render complete die filling. For more general application, a fuzzy system is used in the forward projection technique in order to determine the initial billet shape for rib-web type forging. It has been thus shown that the fuzzy system is more reliable for the preform design in the rib-web type forging process.

Experimental Studies on Flow Characteristics and Thrust Vectoring of Controlled Axisymmetric Jets (원형분사제트 조절을 통한 유동특성 및 제트 벡터링의 효과 고찰)

  • 조형희;이창호;김영석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.63-72
    • /
    • 1997
  • 본 논문은 분사제트 주위에 형성되는 와류를 조절하여 제트를 제어하기 위하여 유동가시화, 속도분포 및 난류성분을 측정하는 실험을 수행하였다. 와류를 조절하기 위한 방법으로 제트노즐 주위에 환형관을 설치하여 환형관으로부터 2차제트를 분사 또는 흡입함으로써 제트주위에 형성되는 전단류를 변화시켰다. 2차제트 분사시 주제트 주위에 형성되는 와류의 발달을 억제함으로써 제트 포텐셜코어의 길이가 아주 길어지는 제트유동을 얻을 수 있었다. 환형관으로부터 주제트주위의 유체를 흡입하는 경우 제트주위의 전단류가 흡입비 R=1.3∼l.65에서 대류불안정성에서 절대불안정성으로 바뀜으로써 형성된 와류가 하류에서 제트중심부까지 발전, 결합되는 것을 방지하여 더 긴포텐셜코어와 중심에서 낮은 난류강도를 얻었다. 위의 결과는 환형관 주위에 부착한 깃의 높이 변화에 따라서 변화하였는데, 이것은 깃이 환형관을 통한 흡입유동의 유로역할을 함으로써 제트밖으로부터 흡입되는 것을 방지할 수 있었다. 분사제트 벡터링을 위하여 제트노즐 주위의 환형관을 이등분하여 한쪽으로만 제트주위의 유동을 흡입함으로써 제트주위에 다른 전단류를 형성함과 동시에 Coanda효과를 이용하여 분사제트를 편향시켰다. 편향되는 정도 및 난류성분은 홉입속도 비에 따라서 크게 바뀌었다.

  • PDF

A Robustness of Hierarchic Element Formulated by Integrals of Legendre Polynomial (적분형 르장드르 함수에 의한 계층요소(階層要素)의 통용성(通用性))

  • Woo, Kwang Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.43-50
    • /
    • 1992
  • The purpose of this study is to ascertain the robustness of p-version model with hierarchic intergrals of Legendre shape functions in various applications including plane stress/strain, axisymmetric and shell problems. The most important symptoms of accuracy failure in modern finite elements are spurious mechanisms and a phenomenon known as locking which are exhibited for incompressible materials and irregular shapes which contain aspect ratios(R/t, a/b), tapered ratio(d/b), and skewness. The condition numbers and energy norms are used to estimate numerical errors, convergence characteristics and algorithmic efficiencies for verifying the aforementioned symptoms of accuracy failure. Numerical results from p-version models are compared with those from NASTRAN, SAP90, and Cheung's hybrid elements.

  • PDF