• Title/Summary/Keyword: 비축대상

Search Result 183, Processing Time 0.029 seconds

차량용 강우센서를 이용한 도심지의 면적강우량 산정

  • Jeung, Se Jin;Kim, Young Gon;Lee, Suk Ho;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.96-96
    • /
    • 2016
  • 최근 들어 지구온난화 등의 환경적 요인과 지역별 온도차 등으로 인해 국지성 호우가 빈발하고 있다. 많은 양의 폭우가 좁은 지역에 집중적으로 비를 뿌리는 국지성 호우는 저지대 침수와 범람, 산사태, 축대 붕괴 등의 위험성 등을 증가시키며, 특히 도시지역은 개발로 인한 지표면의 포장 등 자연공간이 감소하여 개발 전 지표면의 유역 내 저류 및 지연효과가 현저히 감소하고 있다. 시가지의 확대와 도로포장 등 유역 내 불투수층의 증가로 홍수유출량과 첨두유출량이 점차 증가하고 있고 이러한 국지성 호우에 의한 피해는 점점 다양해지고 대형화 되고 있으며, 버스정류장 한 두개 정도의 거리에서도 호우형태가 크게 달라지고 있다. 하지만 영동지방의 경우 1개의 관측소가 $834.4km^2$, 낙동강 유역의 경우 $126.8km^2$로 간헐적으로 분포되어 있다. 많은 양의 폭우가 좁은 지역에 집중적으로 비를 뿌리는 국지성 호우를 관측하기 위해서는 고밀도의 면적강우량 산정이 필요하다. 본 연구에서는 차량용 강우센서를 이용하여 W-S-R 관계식을 개발하였으며, 대상지역인 삼척시내를 대상으로 면적강우량을 산정 하였으며, 실제 관측 면적강우량과의 비교를 통해 차량용 강우 센서를 이용하여 생산된 면적강우량의 효용성을 검토하였다.

  • PDF

An Experimental Study of the Subsonic/Supersonic Steam Ejectors (아음속/초음속 증기 이젝터에 관한 실험적 연구)

  • 최보규;김희동;이준희;김덕줄
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 2000
  • For the purpose of a cost effective design of practical subsoni $c^ersonic ejector systems, an experiment was carried out using a superheated steam as a primary driving flow. The superheated steam jet was produced by several different kinds of subsonic and supersonic nozzles. The secondary flow of atmospheric air inside a plenum chamber was drawn into the primary steam jet. The vacuum performance of the plenum chamber was investigated for a wide range of the ejector operation pressure ratio. The result showed that the static pressure of the mixed flow at the ejector throat is only a function of the ejector operation pressure ratio, regardless of the primary nozzle type employed.ed.

  • PDF

The Effect of the Variation of Pressure Ratio on the Characteristics of Lateral Forces in an Over-Expanded Nozzle (압력비 변화과정이 과팽창 노즐에서 발생하는 횡력 변동 특성에 미치는 영향)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.38-44
    • /
    • 2010
  • The shock wave and boundary layer interaction patterns in an over-expanded rocket nozzle are associated with the production of undesirable side-forces during the start-up and shut-down processes of the engine. In the present work, a computational study is carried out to investigate the effect of the transient nozzle pressure ratio (NPR) on the flow fields inside the nozzle. The unsteady, compressible, axisymmetric, Navier-Stocks equations with SST k-${\omega}$ turbulence model are solved using a fully implicit finite volume scheme. NPR is varied from 2.0 to 10.0, in order to simulate the start-up and shut-down processes of the rocket engine. It is observed that the interaction patterns and the hysteresis phenomenon strongly depend on the time variation of NPR, leading to significantly different characteristics in the lateral forces.

Effects of Short-fiber Aspect Ratio and Diameter Ratio on Tensile Properties of Reinforced Rubber (단섬유 종횡비 및 직경비가 강화고무의 인장특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.18-25
    • /
    • 2003
  • The tensile properties of short nylon6 fiber reinforced NR and SBR have been investigated as functions of fiber aspect ratio(AR), diameter ratio(DR), interphase condition, and fiber content. The tensile strength increased with increasing fiber AR(20 min.) and good interphase conditions. The short-fiber(DR=3 and AR=20 min.) reinforced SBR did not show the dilution effect for all interrhase conditions. And the short-fiber(DR=3 and AR=20min.) reinforced NR did not show the dilution effect except for the no-coating. The tensile moduli were significantly improved due to fiber AR. fiber content, and good interphase at same DR. The better interphase condition showed the higher pull-out force at same DR. Also, the stress analysis near the fiber end carried out using axisymmetric FEA to be convinced of the reinforcing mechanism. It is found that the fiber AR, interphase and DR have an important effect on tensile properties.

A Basic Study on Torsion Shear Tests in Soils (흙의 비틀림전단시험에 관한 기초적 연구)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-28
    • /
    • 1988
  • Among several types of element tests to predict soil behalf.iota in a laboratory, the torsion shear apparatus, in which the directions of principal stresses could be rotated during shearing, wra explained. In this study, this torsion shear apparatus was improved so as to be used in tests on clay specimens . And some undrained torsion shear tests u.ere performed on remolded specimens of Ko-consolidated clay to investigate the influence of reorientation of the principal stress directions on the stress-strain behavior The soil behavior by the torsion shear apparatus without torque was compared It.ith that by the conventional triaxial compression tests . The stress path, provided by both vertical loads and torque during torsion shear tests, has much effect on the stress-strain behavior, the pore pressure and the effective principal stress ratio . The rotation angle of the principal stress and the b-value were gradually increased with increasing shear strain, but converged to the values at failure.

  • PDF

Analysis on the Behaviour of Foundation Using the Non-Linear Constitutive Laws (비선형구성식을 이용한 기초지반의 거동해석)

  • Jeong, Jin Seob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.253-265
    • /
    • 1993
  • This paper presents a numerical method for implementing a nonlinear constitutive material model developed by Lade, into a finite element computer program. The techniques used are based on the displacement method for the solution of axial symmetric and plane strain nonlinear boundary value problems. Laboratory behaviour of Baekma river sand(#40-60) is used to illustrate the determination of the parameters and verification of the model. Computer procedure is developed to determine the material parameters for the nonlinear model from the raw laboratory test data. The model is verified by comparing its predictions with observed data used for the determination of the parameters and then with observed data not used for the determination. Three categories of tests are carried out in the back-prediction exercise; (1) A hydrostatic test including loading and unloading response, (2) Conventional triaxial drained compression tests at three different confining pressure and (3) A model strip footing test not including in the evaluation of material parameters. Pertinent observations are discussed based on the comparison of predicted response and experimental data.

  • PDF

Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures (하이브리드 자외선 노광법을 이용한 3차원 고종횡비 미소구조물 제작)

  • Park, Sungmin;Nam, Gyungmok;Kim, Jonghun;Yoon, Sang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.731-736
    • /
    • 2016
  • Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed.

Spreading Dynamics of an Ellipsoidal Drop Impacting on a Heated Substrate (고온으로 가열된 고체 표면과 충돌하는 타원형 액적의 퍼짐 거동)

  • Yun, Sungchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.205-209
    • /
    • 2017
  • Unlike spherical drop impact, ellipsoidal drop impact can control the bouncing height on a heated surface by significantly altering impact behavior. To scrutinize the effect of the aspect ratio (AR) of the drop on the bounce suppression, in this study, non-axisymmetric spreading behaviors are observed from two side views and characterized based on the spreading width of the drop for horizontal principal axes. In addition, the maximum spreading width is investigated for various ARs. The results show that as the AR increases, the maximum spreading width of the minor axis increases, whereas that of the major axis shows no significant variation. In the regime of high AR and high impact velocity, liquid fragmentations by three parts are observed during bouncing. These fragmentations are discussed in this work. The hydrodynamic features of ellipsoidal drop impact will help understand bouncing control on non-wetting surfaces for several applications, such as self-cleaning and spray cooling.

A rational estimating method of the earth pressure on a shaft wall considering the shape ratio (벽체형상비의 영향을 합리적으로 고려한 원형수직구 벽체에 작용하는 토압산정방법)

  • Shin, Young-Wan;SaGong, Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.143-155
    • /
    • 2007
  • The earth pressure acting on a circular shaft wall is smaller than that acting on the wall in plane strain condition due to the three dimensional axi-symmetric arching effect. Accurate estimation of the earth pressure is required for the design of the shaft wall. In this study, the stress model considering the decrease of earth pressure due to the horizontal and vertical arching effect and the influence of shape ratio (shaft height/radius) is proposed. In addition, model test on the sandy soil is conducted and a comparison is made between the stress model and the test results. The comparison shows that the proposed stress model is in agreement with test results; decrease of shape ratio (increase of radius) leads to stress state equal to the plane strain condition and approximate stress distribution is found between stress model and model test results.

  • PDF

Study on the Hysteretic Behaviors of Shock Wave in a Supersonic Wind Tunnel (초음속 풍동에서 발생하는 충격파의 히스테리시스 현상에 관한 연구)

  • Lee, Ik In;Han, Geu Roo;Kim, Teo Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.52-58
    • /
    • 2018
  • Hysteresis phenomena are often encountered in a wide variety of fluid flow systems used in industrial and engineering applications. Hence, in recent years, a significant amount of research been focusing on clarifying the physics of the flow hysteresis appearing during the transient change of the pressure ratios and influencing the performance of the supersonic wind tunnel. However, investigations on the hysteresis phenomenon, particularly when it occurs inside the supersonic wind tunnel, are rare. In this study, numerical simulations were carried out to investigate the hysteresis phenomena of the shock waves encountered in a supersonic wind tunnel. The unsteady and compressible flow was analyzed with an axisymmetric model, and the N-S equations were solved by using a fully implicit finite volume scheme. The optimal pressure ratio was determined from the hysteresis curves, and the results can be utilized to operate the wind tunnel efficiently.