• Title/Summary/Keyword: 비지도 학습

Search Result 225, Processing Time 0.031 seconds

Anomaly Detection in printed patters using U-Net (U-Net 모델을 이용한 비정상 인쇄물 검출 방법)

  • Hong, Soon-Hyun;Nam, Hyeon-Gil;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.686-688
    • /
    • 2020
  • 본 논문에서는 U-Net 모델을 이용하여 정교하고 반복되는 패턴을 가진 인쇄물에 대한 비지도 학습을 통한 딥러닝 기반 이상치탐지(Anomaly Detection) 방법을 제안하였다. 인쇄물(카드)의 비정상 패턴 검출을 위하여 촬영한 영상으로부터 카드 영역을 분리한 이미지로 구성된 Dataset을 구축하였고 정상 이미지와 동일한 이미지를 출력하기 위해, 정상 이미지와 마스크 이미지 쌍의 Training dataset을 U-Net으로 학습하였다. Test dataset의 이미지를 입력으로 넣어 생성된 마스크 결과를 원본 마스크 이미지와 비교하여 이상 여부를 판단하는 본 논문의 방법이 정상, 비정상 인쇄물을 잘 구분하는 것을 확인하였다. 또한 정상과 비정상 이미지 각각을 학습한 지도학습 기반 CNN 분류 방법을 입력 영상과 복원 영상 간의 복원 오차를 비교하여 객체의 이상 여부를 판별하는 본 논문의 방법과 비교 평가하였다. 본 논문을 통해 U-Net을 사용하여 별도로 데이터에 대한 label 취득 없이 이상치를 검출할 수 있음을 확인할 수 있었다.

  • PDF

Traffic Attributes Correlation Mechanism based on Self-Organizing Maps for Real-Time Intrusion Detection (실시간 침입탐지를 위한 자기 조직화 지도(SOM)기반 트래픽 속성 상관관계 메커니즘)

  • Hwang, Kyoung-Ae;Oh, Ha-Young;Lim, Ji-Young;Chae, Ki-Joon;Nah, Jung-Chan
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.649-658
    • /
    • 2005
  • Since the Network based attack Is extensive in the real state of damage, It is very important to detect intrusion quickly at the beginning. But the intrusion detection using supervised learning needs either the preprocessing enormous data or the manager's analysis. Also it has two difficulties to detect abnormal traffic that the manager's analysis might be incorrect and would miss the real time detection. In this paper, we propose a traffic attributes correlation analysis mechanism based on self-organizing maps(SOM) for the real-time intrusion detection. The proposed mechanism has three steps. First, with unsupervised learning build a map cluster composed of similar traffic. Second, label each map cluster to divide the map into normal traffic and abnormal traffic. In this step there is a rule which is created through the correlation analysis with SOM. At last, the mechanism would the process real-time detecting and updating gradually. During a lot of experiments the proposed mechanism has good performance in real-time intrusion to combine of unsupervised learning and supervised learning than that of supervised learning.

Damage Localization of Bridges with Variational Autoencoder (Variational Autoencoder를 이용한 교량 손상 위치 추정방법)

  • Lee, Kanghyeok;Chung, Minwoong;Jeon, Chanwoong;Shin, Do Hyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.233-238
    • /
    • 2020
  • Most deep learning (DL) approaches for bridge damage localization based on a structural health monitoring system commonly use supervised learning-based DL models. The supervised learning-based DL model requires the response data obtained from sensors on the bridge and also the label which indicates the damaged state of the bridge. However, it is impractical to accurately obtain the label data in fields, thus, the supervised learning-based DL model has a limitation in that it is not easily applicable in practice. On the other hand, an unsupervised learning-based DL model has the merit of being able to train without label data. Considering this advantage, this study aims to propose and theoretically validate a damage localization approach for bridges using a variational autoencoder, a representative unsupervised learning-based DL network: as a result, this study indicated the feasibility of VAE for damage localization.

Landmark recognition through image searcher (이미지 검색기를 통한 랜드마크 인식)

  • Gi-Duk Kim;Geun-Hoo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.313-315
    • /
    • 2024
  • 본 논문에서는 이미지 검색기를 통한 랜드마크 인식 방법을 제안한다. 특정 랜드마크 데이터세트에서 라벨링을 하지 않은 비지도 학습을 통해서 이미지에서 랜드마크의 클래스 분류를 위한 특징을 추출한다. 학습된 모델을 랜드마크 데이터세트인 Paris6k 데이터세트와 Oxford5k 데이터세트에 적용하여 랜드마크 인식 정확도를 확인하였다. 성능과 속도를 강화하기 위해 이미지 특징 추출 모델로 ResNet 대신에 YOLO에서 사용된 CSPDarknet-53을 사용하여 모델의 크기를 줄이고 랜드마크 인식 정확도를 높였다. 그리고 모델로부터 추출된 특징의 수를 줄여 이미지 검색 시 소요되는 시간을 감소시켰다. 학습된 모델로 rOxford5k 데이터 세트에 적용 시 mAP 80.37, rParis6k에서 mAP 89.07을 얻었다.

  • PDF

Bio-mimetic Recognition of Action Sequence using Unsupervised Learning (비지도 학습을 이용한 생체 모방 동작 인지 기반의 동작 순서 인식)

  • Kim, Jin Ok
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.9-20
    • /
    • 2014
  • Making good predictions about the outcome of one's actions would seem to be essential in the context of social interaction and decision-making. This paper proposes a computational model for learning articulated motion patterns for action recognition, which mimics biological-inspired visual perception processing of human brain. Developed model of cortical architecture for the unsupervised learning of motion sequence, builds upon neurophysiological knowledge about the cortical sites such as IT, MT, STS and specific neuronal representation which contribute to articulated motion perception. Experiments show how the model automatically selects significant motion patterns as well as meaningful static snapshot categories from continuous video input. Such key poses correspond to articulated postures which are utilized in probing the trained network to impose implied motion perception from static views. We also present how sequence selective representations are learned in STS by fusing snapshot and motion input and how learned feedback connections enable making predictions about future input sequence. Network simulations demonstrate the computational capacity of the proposed model for motion recognition.

Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder (비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법)

  • Junwoo Lee;Kangseok Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.355-364
    • /
    • 2023
  • As advanced cyber threats continue to increase in recent years, it is difficult to detect new types of cyber attacks with existing pattern or signature-based intrusion detection method. Therefore, research on anomaly detection methods using data learning-based artificial intelligence technology is increasing. In addition, supervised learning-based anomaly detection methods are difficult to use in real environments because they require sufficient labeled data for learning. Research on an unsupervised learning-based method that learns from normal data and detects an anomaly by finding a pattern in the data itself has been actively conducted. Therefore, this study aims to extract a latent vector that preserves useful sequence information from sequence log data and develop an anomaly detection learning model using the extracted latent vector. Word2Vec was used to create a dense vector representation corresponding to the characteristics of each sequence, and an unsupervised autoencoder was developed to extract latent vectors from sequence data expressed as dense vectors. The developed autoencoder model is a recurrent neural network GRU (Gated Recurrent Unit) based denoising autoencoder suitable for sequence data, a one-dimensional convolutional neural network-based autoencoder to solve the limited short-term memory problem that GRU can have, and an autoencoder combining GRU and one-dimensional convolution was used. The data used in the experiment is time-series-based NGIDS (Next Generation IDS Dataset) data, and as a result of the experiment, an autoencoder that combines GRU and one-dimensional convolution is better than a model using a GRU-based autoencoder or a one-dimensional convolution-based autoencoder. It was efficient in terms of learning time for extracting useful latent patterns from training data, and showed stable performance with smaller fluctuations in anomaly detection performance.

Developing a Text Categorization System Based on Unsupervised Learning Using an Information Retrieval Technique (정보검색 기술을 이용한 비지도 학습 기반 문서 분류 시스템 개발)

  • Noh, Dae-Wook;Lee, Soo-Yong;Ra, Dong-Yul
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.2
    • /
    • pp.160-168
    • /
    • 2007
  • For developing a text classifier using supervised learning, a manually labeled corpus of large size is required. However, it takes a lot of time and human effort. Recently a research paradigm was proposed to use a raw corpus and a small amount of seed information instead of manually labeled corpus. In this paper we introduce an unsupervised learning method that makes it possible to achieve better performance than other related works. The characteristics of our approach is that average mutual information is used to learn representative words and their weights and then update of the weights is done using a technique inspired by the works in information retrieval. By iterating this teaming process it was shown that a high performance system can be developed.

A Study on the Design of Supervised and Unsupervised Learning Models for Fault and Anomaly Detection in Manufacturing Facilities (제조 설비 이상탐지를 위한 지도학습 및 비지도학습 모델 설계에 관한 연구)

  • Oh, Min-Ji;Choi, Eun-Seon;Roh, Kyung-Woo;Kim, Jae-Sung;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In the era of the 4th industrial revolution, smart factories have received great attention, where production and manufacturing technology and ICT converge. With the development of IoT technology and big data, automation of production systems has become possible. In the advanced manufacturing industry, production systems are subject to unscheduled performance degradation and downtime, and there is a demand to reduce safety risks by detecting and reparing potential errors as soon as possible. This study designs a model based on supervised and unsupervised learning for detecting anomalies. The accuracy of XGBoost, LightGBM, and CNN models was compared as a supervised learning analysis method. Through the evaluation index based on the confusion matrix, it was confirmed that LightGBM is most predictive (97%). In addition, as an unsupervised learning analysis method, MD, AE, and LSTM-AE models were constructed. Comparing three unsupervised learning analysis methods, the LSTM-AE model detected 75% of anomalies and showed the best performance. This study aims to contribute to the advancement of the smart factory by combining supervised and unsupervised learning techniques to accurately diagnose equipment failures and predict when abnormal situations occur, thereby laying the foundation for preemptive responses to abnormal situations. do.

Virtual view synthesis using unsupervised learning depth estimation model (비지도 학습 깊이 예측 모델을 이용한 가상시점 합성)

  • Song, Min-Ki;Yang, Ji-Hee;Hwang, Dong-Ho;Park, Goo-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.155-157
    • /
    • 2019
  • 본 논문에서는 기존의 DERS, VSRS를 이용한 가상시점 합성이 가지고 있는 문제점을 해결하기 위해 비지도 학습 방식의 학습 모델을 이용하여 가상시점 합성에 적용하는 방식을 제안한다. 제안한 방식에서는 기존의 DERS와 달리 Disparity의 탐색범위를 지정하지 않고 Depth의 예측이 가능하며 단안의 영상에서 Depth를 예측하기 때문에 가상시점 합성 시 더 넓은 시점을 합성 할 수 있다. 또한 기존 방식은 Depth와 합성 영상을 각각 처리해야하지만 제안하는 방식은 한 번에 작업이 이루어지며, GPU를 기반으로 구현하였기 때문에 기존의 합성 방식 보다 처리 속도가 우수하다.

  • PDF

Bayesian Model based Korean Semantic Role Induction (베이지안 모형 기반 한국어 의미역 유도)

  • Won, Yousung;Lee, Woochul;Kim, Hyungjun;Lee, Yeonsoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.111-116
    • /
    • 2016
  • 의미역은 자연어 문장의 서술어와 관련된 논항의 역할을 설명하는 것으로, 주어진 서술어에 대한 논항인식(Argument Identification) 및 분류(Argument Labeling)의 과정을 거쳐 의미역 결정(Semantic Role Labeling)이 이루어진다. 이를 위해서는 격틀 사전을 이용한 방법이나 말뭉치를 이용한 지도 학습(Supervised Learning) 방법이 주를 이루고 있다. 이때, 격틀 사전 또는 의미역 주석 정보가 부착된 말뭉치를 구축하는 것은 필수적이지만, 이러한 노력을 최소화하기 위해 본 논문에서는 비모수적 베이지안 모델(Nonparametric Bayesian Model)을 기반으로 서술어에 가능한 의미역을 추론하는 비지도 학습(Unsupervised Learning)을 수행한다.

  • PDF