• 제목/요약/키워드: 비정형 환경

검색결과 247건 처리시간 0.034초

모바일게임에 적용 가능한 비정형 Big Data 처리를 위한 Incremental MapReduce (Incremental MapReduce of atypical Big Data Processing in Mobile Game)

  • 박성준;김정웅
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.301-304
    • /
    • 2014
  • 비정형 게임 Big Data에서 고효율 정보를 추출하고, 신뢰 할 수 있는 클러스터 게임서버 환경을 위한 병렬 처리를 위해 MapReduce를 사용한다. 본 논문에서는 빈번하게 입력되는 신규 게임데이터 처리를 위해 함수 Demap을 사용하는 Incremental MapReduce를 적용하여 불필요한 중간 값 저장과 재계산 없이 점차적으로 MapReduce 함수를 실행한다.

웹 상에서의 비정형 시스템의 자율적 설계 (A Web-Based Autonomous Design for Unstructured Systems)

  • 최정우;최인수
    • 한국컴퓨터정보학회논문지
    • /
    • 제8권2호
    • /
    • pp.64-74
    • /
    • 2003
  • 비정형 시스템이란 각 시스템이 처한 환경변수에 따라 서로 다른 시스템의 설계와 구축이 필요하고 수시로 시스템의 변동과 수정이 필요한 시스템을 말한다. 지금까지는 이런 비정형 시스템은 대부분이 오프라인 상에서 구현되었기 때문에 시스템의 유지보수에 많은 투자가 필요하였으며 중앙 집중적 관리는 더더욱 어려웠었다. 이러한 방식의 시스템의 구현은 하나의 표준화된 틀에 맞추어 이루어졌기에 실세계를 정확하게 표현하지 못하였으며 비정형 시스템이 가진 특징을 적절하게 수용할 수 없었다. 이러한 문제를 해결하고자 시스템 내의 각 모듈의 설계를 자율적으로 할 수 있고 유지보수가 용이한 자율 시스템이라는 새로운 개념의 시스템 개발론을 제안하고 있다. 또한 이러한 자율 시스템 개발방법론을 활용한 웹 상에서의 시스템 구축 실례를 보여주고 있다.

  • PDF

IoE 환경에서 공장에너지 관리를 위한 빅시맨틱 시스템 설계 (Design of Big Semantic System for Factory Energy Management in IoE environments)

  • 권순현;이좌형;김선혁;이상금;신영미;도윤미;허태욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.37-39
    • /
    • 2022
  • 기존 IoE 환경에서 수집데이터는 특정 서비스를 위한 도메인 지식과 연계되어 서비스를 제공한다. 하지만 수집되는 데이터의 유형이 다양하고, 정적인 지식베이스가 상황에 따라 동적으로 변화하는 IoE 환경에서는 기존의 지식베이스 시스템을 통하여 원활한 서비스를 제공할 수 없었다. 따라서, 본 논문에서는 IoE 환경에서 발생하는 대용량/실시간성 데이터를 시맨틱으로 처리하여 공통 도메인 지식베이스와 연계하고 기존의 지식베이스 추론 방법과 기계학습 기반 지식 임베딩 기법을 통하여 지식 증강을 유기적으로 진행하는 빅시맨틱 시스템을 제시한다. 제시한 시스템은 IoE 환경의 멀티모달(정형, 비정형) 데이터를 수집하고 반자동적으로 시맨틱 변환을 수행하여 도메인 지식베이스에 저장하고, 시맨틱 추론을 통해 지식베이스를 증강 시키며 증강된 지식베이스를 포함한 전체 지식베이스를 정형 및 반정형 사용자 쿼리를 통해 지식정보를 사용자에게 제공한다. 또한, 기계학습 기반 지식 임베딩 기법을 통해 학습·예측을 함으로써, 기존의 지식베이스를 증강하는 기능을 수행한다. 본 논문에서 제시한 시스템은 공장내의 에너지 정보를 수집하여 공정 및 설비 상태 및 운영정보를 바탕으로 실시간 제어를 통한 에너지 절감 시스템인 공장 에너지 관리 시스템의 기반 기술로 구현될 예정이다.

환경 빅데이터 이슈 분석을 위한 용어 가중치 기법 비교 (Comparison of Term-Weighting Schemes for Environmental Big Data Analysis)

  • 김정진;정한석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.236-236
    • /
    • 2021
  • 최근 텍스트와 같은 비정형 데이터의 생성 속도가 급격하게 증가함에 따라, 이를 분석하기 위한 기술들의 필요성이 커지고 있다. 텍스트 마이닝은 자연어 처리기술을 사용하여 비정형 텍스트를 정형화하고, 문서에서 가치있는 정보를 획득할 수 있는 기법 중 하나이다. 텍스트 마이닝 기법은 일반적으로 각각의 분서별로 특정 용어의 사용 빈도를 나타내는 문서-용어 빈도행렬을 사용하여 용어의 중요도를 나타내고, 다양한 연구 분야에서 이를 활용하고 있다. 하지만, 문서-용어 빈도 행렬에서 나타내는 용어들의 빈도들은 문서들의 차별성과 그에 따른 용어들의 중요도를 나타내기 어렵기때문에, 용어 가중치를 적용하여 문서가 가지고 있는 특징을 분류하는 방법이 필수적이다. 다양한 용어 가중치를 적용하는 방법들이 개발되어 적용되고 있지만, 환경 분야에서는 용어 가중치 기법 적용에 따른 효율성 평가 연구가 미비한 상황이다. 또한, 환경 이슈 분석의 경우 단순히 문서들에 특징을 파악하고 주어진 문서들을 분류하기보다, 시간적 분포도에 따른 각 문서의 특징을 반영하는 것도 상대적으로 중요하다. 따라서, 본 연구에서는 텍스트 마이닝을 이용하여 2015-2020년의 서울지역 환경뉴스 데이터를 사용하여 환경 이슈 분석에 적합한 용어 가중치 기법들을 비교분석하였다. 용어 가중치 기법으로는 TF-IDF (Term frequency-inverse document frquency), BM25, TF-IGM (TF-inverse gravity moment), TF-IDF-ICSDF (TF-IDF-inverse classs space density frequency)를 적용하였다. 본 연구를 통해 환경문서 및 개체 분류에 대한 최적화된 용어 가중치 기법을 제시하고, 서울지역의 환경 이슈와 관련된 핵심어 추출정보를 제공하고자 한다.

  • PDF

3D기반 비정형 토목구조물 물량산출 알고리즘 개발 (Development of Quantity Take-off Algorithm for Irregularly Shaped Structures using 3D Object)

  • 하철석;문소영;문현석;강인석
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.655-666
    • /
    • 2014
  • 최근 건설공사에 디자인적 요소가 많이 강조 되면서 비정형 구조물이 증가하고 있다. 이에 따라 여러 소프트웨어들이 BIM환경에서 3D객체의 물량산출기능을 제공하고 있지만, 솔리드 모델기반 정형화된 객체의 제한된 물량산출기능을 제공하고 있다. 비정형 토목 구조물과 같이 수직적 단면형상의 변화정도가 심한 3D객체는 다수의 곡면 표현을 포함하므로 솔리드로 모델링하는데 많은 노력이 필요하며, 해당 모델이 포함한 기하정보의 수가 방대하기 때문에 특정한 단면에 대한 기하정보를 추출하기가 용이치 않다. 이러한 이유로 비정형 구조물을 솔리드 모델의 3D객체로 표현하는 데에는 한계가 따른다. 반면 서피스 모델은 비정형 객체의 형상을 비교적 자유로이 표현할 수 있고, 점, 선, 면으로만 이루어진 모델이기 때문에 정보의 용량이 적다. 따라서 대부분이 복잡한 형태로 방대한 양의 설계작업을 필요로 하는 토목공사의 설계정보 용량을 고려한다면, 서피스 모델링은 토목구조물 설계와 물량산출에 유리한 모델링 방법이 될 수 있다. 본 연구는 건설공사 비정형 구조물의 설계 작업에 유리한 서피스 모델기반의 3D객체를 이용한 비정형 객체의 물량산출 알고리즘을 제시하는 데 목적이 있다. 제시된 방법론은 사례적용을 통하여 수계산 및 기존 솔리드방식의 물량산출결과와 비교하여 정확성을 검증하고 있다.

문서 임베딩을 이용한 소셜 미디어 문장의 개체 연결 (Document Embedding for Entity Linking in Social Media)

  • 박영민;정소윤;이정엄;신동수;김선아;서정연
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.194-196
    • /
    • 2017
  • 기존의 단어 기반 접근법을 이용한 개체 연결은 단어의 변형, 신조어 등이 빈번하게 나타나는 비정형 문장에 대해서는 좋은 성능을 기대하기 어렵다. 본 논문에서는 문서 임베딩과 선형 변환을 이용하여 단어 기반 접근법의 단점을 해소하는 개체 연결을 제안한다. 문서 임베딩은 하나의 문서 전체를 벡터 공간에 표현하여 문서 간 의미적 유사도를 계산할 수 있다. 본 논문에서는 또한 비교적 정형 문장인 위키백과 문장과 비정형 문장인 소셜 미디어 문장 사이에 선형 변환을 수행하여 두 문형 사이의 표현 격차를 해소하였다. 제안하는 개체 연결 방법은 대표적인 소셜 미디어인 트위터 환경 문장에서 단어 기반 접근법과 비교하여 높은 성능 향상을 보였다.

  • PDF

빅데이터 환경에서 기계학습 알고리즘 응용을 통한 보안 성향 분석 기법 (Security tendency analysis techniques through machine learning algorithms applications in big data environments)

  • 최도현;박중오
    • 디지털융복합연구
    • /
    • 제13권9호
    • /
    • pp.269-276
    • /
    • 2015
  • 최근 빅데이터 관련 산업 활성화에 따라 글로벌 보안 업체들은 지능적인 보안 위협 모니터링과 예방을 위해 분석 데이터의 범위를 정형/비정형 데이터로 확대하고, 보안 예방을 목적으로 사용자의 성향 분석 기법을 활용하려는 추세이다. 이는 기존 정형 데이터(기존 수치화 가능한 자료)의 분석 결과에서 추론할 수 있는 정보의 범위가 한정적이기 때문이다. 본 논문은 빅데이터 환경에서 기계학습 알고리즘($Na{\ddot{i}}ve$ Bayes, Decision Tree, K-nearest neighbor, Apriori)을 효율적으로 응용하여 보안 성향(목적 별 항목 분류, 긍정 부정 판단, 핵심 키워드 연관성 분석)을 분석하는데 활용한다. 성능 분석 결과 보안 성향 판단을 위한 보안항목 및 특정 지표를 정형/비정형 데이터에서 추출할 수 있음을 확인하였다.

연결형 합성시스템을 위한 문맥종속 단위 기반의 비정형 합성단위 추출 알고리즘 (An algorithm of the Non-uniform synthesis unit selection for concatenative speech synthesis system)

  • 김영일
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.273.2-277
    • /
    • 1998
  • 본 논문에서는 음소단위 비정형 연결합성 시, 접합점에서 포만트 불연속을 최소화할 수 있도록 이웃음소간 경계강도 예측모델과 합성단위 검색시 음소단위 최장일치 검색 알고리즘을 설계하였다. 합성단위 연결부에서 발생하는 신호왜곡을 최소화하기 위해 “_C_”환경에서 자음이 유성음화된 경우, “_V_”환경에서 모음이 무성음화된 경우, 그리고 유성음 사이의 포만트 주파수 차이에 대한 모델을 생성하여, 음소간의 조음강도가 약한 부분이 합성단위 경계로 설정되도록 하였다. 합성단위 경계가 결정되면 주어진 문장의 문맥정보만을 이용하여 코포스로부터 후보를 선택한다. 선택된 후보를 사이의 연결성을 측정하기 위하여 합성 경계를 기준으로 전, 후 음소에 대한 음성적 특성과 포만트 천이 특성을 고려하였다. 실험은 K-ToBI 레이블링된 200문장을 기반으로 하였으며, 코퍼스로부터 한 문장을 선택하여 이를 목적치 패턴으로 선정 한 후, 목적치 패턴과 후보사이의 단위비용과 후보들 간의 연결비용을 계산하여 최적의 합성단위열을 추출하는 방식으로 이루어졌다. 본 논문에서는 이러한 문맥종속 단위 기반의 합성단위 추출 알고리즘과 실험 결과에 대해 보고한다.

  • PDF

빅데이터 분석 도구 R을 이용한 비정형 데이터 텍스트 마이닝과 시각화 (Text Mining and Visualization of Unstructured Data Using Big Data Analytical Tool R)

  • 남수태;신성윤;진찬용
    • 한국정보통신학회논문지
    • /
    • 제25권9호
    • /
    • pp.1199-1205
    • /
    • 2021
  • 빅데이터 시대에는 단순히 데이터베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 실시간 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 빅데이터를 효과적으로 분석하는 것이 매우 중요하다. 빅데이터 분석은 데이터 저장소에 저장된 빅데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 빅데이터 분석 도구인 R 언어를 이용하여 비정형 논문 데이터를 빈도분석을 통해 분석결과를 요약과 시각화하고자 한다. 본 연구에서 사용된 데이터는 한국정보통신학회 학회지 논문 중에서 2021년 1월호-5월호 총 논문 104편을 대상으로 분석하였다. 최종 분석결과 가장 많이 언급된 키워드는 "데이터"가 1,538회로 1위를 차지하였다. 따라서 분석결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하고자 한다.

웹정보콘텐츠 산업의 현황과 동향

  • 이창한
    • 디지털콘텐츠
    • /
    • 1호통권152호
    • /
    • pp.131-139
    • /
    • 2006
  • 웹정보콘텐츠 산업은 정보제공기업이 유ㆍ무선 인터넷을 통해 정형화된 데이터베이스 또는 비정형 정보를 제작해 서비스하고 이용자로부터 회원제, 건당 요금 등의 요금체계에 따라 정보이용료를 받아 수익을 올리는 산업이다. 본 고에서는 웹정보콘텐츠산업의 국내외 동향, 제작 유통 환경, 이용환경, 기술 동향 및 향후 전망과 과제에 대해 소개한다.

  • PDF