• Title/Summary/Keyword: 비정형 형상

Search Result 81, Processing Time 0.03 seconds

Development of Side Formwork Control System for Production FCP(Free-form Concrete Panel) (비정형 콘크리트 패널 생산을 위한 측면형상 제어시스템 개발)

  • Kim, Ki-Hyuk;Jung, Kyeong-Tae;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.53-54
    • /
    • 2019
  • Currently, the market for free-form building continues to grow, but the technology for construction of free-form building in Korea is still in need of much study. In this study, we focused on this problem and conducted basic study for development a side formwork control system to product various types of FCP. As a result of this study, it is expected that it will be able to secure competitiveness for the free-form building market, which is expected to contribute greatly to the growth of the construction industry.

  • PDF

Verification of the Torsional Amplification Factor for the Seismic Design of Torsionally Imbalanced Buildings (비틀림 비정형 건물의 내진설계를 위한 우발편심 비틀림 증폭계수 검증)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Because of the difference between the actual and computed eccentricity of buildings, symmetrical buildings will be affected by torsion. In provisions, accidental eccentricity is intended to cover the effect of several factors, such as unfavorable distributions of dead- and live-load masses and the rotational component of ground motion about a vertical axis. The torsional amplification factor is introduced to reduce the vulnerability of torsionally imbalanced buildings. The effect of the torsional amplification factor is observed for a symmetric rectangular building with various aspect ratios, where the seismic-force-resisting elements are positioned at a variable distance from the geometrical center in each direction. For verifying the torsional amplification factor in provisions, nonlinear reinforced concrete models with various eccentricities and aspect ratios are used in rock. The difference between the maximum displacements of the flexible edge obtained between using nonlinear static and time-history analysis is very small but the difference between the maximum torsional angles is large.

Efficiency Analysis of 2D Flow Model According to Cell Configurations (셀 구성에 따른 2차원 흐름모형의 효율성 분석)

  • Shin, Eun Taek;Chung, Hee Soo;Song, Chang Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.247-247
    • /
    • 2021
  • 국내외적으로 하도 내의 흐름을 해석하기 위해 다양한 2차원 흐름해석 모형이 적용되고 있다. 2차원 흐름해석 모형은 기존의 1차원 흐름 해석 모형에서 해석하기 어려운 확산형 홍수파 해석에 강점을 가지고 있어 도심 하천의 외수 범람 예측 등에도 사용되고 있다. 하지만 복잡한 지형 형상을 어떻게 격자로 구성하는가에 따라 해석의 효율성과 정확성이 크게 좌우된다. 초기의 2차원 흐름해석 모형은 주로 정형격자 기반의 단순한 셀을 제작하여 구동되었다. 하지만 매우 빠른 유속과 복잡한 형상을 반영하기 위해서는 전체 격자를 조밀하게 구성할 필요가 있으므로 계산 효율이 떨어지는 문제점이 있다. 그렇기 때문에 대안으로 삼각망과 혼합망 등 비정형 격자를 사용하여 필요한 구역만 격자를 조밀하게 구성하는 방법을 사용하고 있지만 이 방법 또한 추가적인 계산 과정에 따른 계산 시간의 증가가 필연적이다. 따라서 최근에는 정형격자와 비정형격자에 대하여 wet-dry front matrix 최적화, 절점제거법 등 다양한 기법을 통하여 계산 효율을 향상시키고 있는 실정이다. 따라서 본 연구에서는 HLLC Rimann solver와 2차 정확도 기법인 MUSCL-Hancock Method를 적용한 유한체적기반 천수방정식을 기반으로 다양한 격자 구성에 따른 2차원 흐름해석 모형의 효율성 분석을 수행하고, 이를 통해 최적의 흐름해석 방안을 제시하고자 한다.

  • PDF

A Development of Pre and Post Processor for Design of Surface System of Free Form Building (비정형 건축물의 외피시스템 설계를 위한 전·후처리 모듈 개발)

  • Park, Se-Hee;Jung, Sung-Jin;Lee, Jae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.333-340
    • /
    • 2018
  • Recently, free-form buildings have been designed with complex shapes due to digitization of the construction industry. Exterior and interior components of free-form buildings have free cross sections and curved shapes. Therefore, structural members with curvature are frequently seen. In the modeling and stability evaluation of these structures, commercial programs using classical finite element analysis are not able to perform rapid shape modeling, resulting in a decrease in productivity. Therefore, in this study, pre- and post-processing modules were developed using a prior study to rapidly model the surface of a free-form building and to automatically generate frame structures that make up the cladding. The developed modules use a subdivision algorithm with spline curves. This algorithm is used to automatically generate analytical elements from the configuration information of NURBS curves. In addition, the deformation after analysis can be viewed more realistically. The modules can quickly construct complex curved surfaces. An analysis model of the frame structure was also automatically generated. Therefore, the modules could contribute to the productivity improvement of free-form building design.

Interface Technique for Optimization of Free-form Structural System (구조 최적화를 위한 비정형 구조시스템의 인터페이스 기법)

  • Na, Yoo-Mi;Lee, Jae-Hong;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.43-50
    • /
    • 2012
  • Recently, due to the advanced computer technology, momental architectures have been designed and built using features that are very sophisticated. People's interest in free-form structural system has increased steadily not only nationwide, but also worldwide. However, there were many difficulties in the materialization of free-form structural system owing to the lack of technique and research. To solve this problem, this study performs the interface between the 3D modeling program and the optimization program. In the 3D modeling program, it is possible to automatic mesh generation and immediately to information extraction. It performs the shape optimization. Consequently, this research designs the example model and performs optimization in order to verify the developed interface module.

A Study on the Analysis of the Error Rate of Mixed Mortar Panel for Implementation Free-form Shape (비정형 형상구현을 위한 혼합모르타르 패널의 오차율 분석 연구)

  • Oh, Young-Geun;Jeong, Kyeong-Tae;Lee, Dong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Since the third industrial revolution has been started in the 1980s, the form of buildings has been varied and atypical by the development of building technology. Such free-form building has a curved shape unlike the existing standard buildings, and to realize this, it is necessary to manufacture the free-from panel. The shape of the free-form panel must satisfy a limited error ratio compared with the design shape, and the technology to produce free-form panels is very difficult. However, there are many problems such as enormous cost and construction waste generation when implementing free-from construction. Therefore, the development of free-form panel manufacturing technology should be made to solve the problems caused by the free-form construction. In this study, the error rate analysis of the mixed mortar panel was conducted by selecting the proper mixing ratio of the mixed mortar for the shape of the free-form panel.

Development of Quantity Take-off Algorithm for Irregularly Shaped Structures using 3D Object (3D기반 비정형 토목구조물 물량산출 알고리즘 개발)

  • Ha, Cheol-Seok;Moon, So-Yeong;Moon, Hyoun-Seok;Kang, Leen-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.655-666
    • /
    • 2014
  • Recently, as the appearance and exterior design of the construction structure are highlighted, the irregularly shaped structures are increasing in a construction facility. Many softwares provide a quantity take-off function of 3D object under BIM environment, however, they are focused on the limited function based on the solid modeling method. Because the vast geometric information of the curved surface is difficult to extract in the 3D objects that consist of major changes in vertical section shape as the irregularly shaped structures, it is difficult to express a 3D object as a solid model. On the other hand, the irregularly shaped structures can be expressed in relatively free in the surface model because the surface model consists of points, lines and surfaces. Accordingly, the surface modeling method is suitable for the modeling of large irregularly shaped structures. This study suggests a quantity take-off algorithm for the irregularly shaped structures using the surface modeling approach that is beneficial in the design work of structures. Some case projects are used for verifying the accuracy of the proposed method.

A Development of NURBS-Based Pre and Post Processor for Structural Analysis of Free-Shaped Beam (자유형상 보요소 해석을 위한 NURBS기반의 전·후처리 모듈 개발)

  • Jung, Sung-Jin;Park, Se-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6673-6678
    • /
    • 2015
  • Recently, the free form buildings are constructed frequently. Exterior and interior components of these buildings have the free cross-section and a curved shape. So, There are many usages of classical finite element having tapered section and free-style shape. Some general commercial applications like ETABS, SAP2000, MIDAS are usually used for the safety evaluation of the free form structures. However, there are some limits in the accuracy of structural analysis and the length of analysis time because a very complicated finite element mesh have to be used. Therefore, In this study, a pre and post program module was developed to take advantage of general 3-D curved beam element which has a free-style curved shape and mathematical backgrounds. Pre-post processing module has been developed in this study was developed to control the curvature of the curved members by the NURBS control points. As a result, fast geometric modeling than was possible commercial applications. In addition, realistic depiction of the shape and behavior patterns were possible because of the free-form building allows visual check of the free form.

A Study on the Problem Analysis and Quality Improvement in Fabricating Free-Form Buildings Facade Panels through Mock-up Panels Production (Mock-up 부재제작을 통한 비정형 건축 외장부재의 제작 문제점 분석 및 개선방안에 관한 연구)

  • Kwen, Soon-Ho;Shim, Hyoun-Woo;Ock, Jong-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.11-21
    • /
    • 2011
  • The most critical issue in free-form buildings is how to construct the free-formed exterior facade panels. Their geometric complexity delivers many cons and problems in fabricating and constructing their shapes. To construct a free-form building, first of all, its skin has to be chopped into small pieces, which is called panelization. After panelization, the panels go through an optimization process to construct them economically. The panel's geometries are modified or regenerated through this optimization process. In this study, the panel optimization process of free-form buildings are performed through a case study. The panel shapes of the case study are modeled with Digital Project. To test the constructability of the various panels, 8 mock-up panels are made and laser scanning technology is applied to measure the preciseness of the panels manufactured in comparison with their original design.

Evaluation of Shape Deviation in Phase Change Material Molds Subjected to Hydration Heat During Ultra-High Performance Concrete Free-form Panel Fabrication (UHPC 비정형 패널 제작 시 수화열에 의한 PCM 거푸집의 형상오차 분석)

  • Kim, Hong-Yeon;Cha, Jae-Hyeok;Youn, Jong-Young;Kim, Sung-Jin;Lee, Donghoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2023
  • The construction of free-form structures with intricate curved exteriors necessitates the use of bespoke molds. To fulfill this requirement, a blend of Phase Change Material(PCM) and Ultra-High Performance Concrete(UHPC) is utilized. PCM endows the solution with recyclability, while UHPC facilitates the effortless execution of curvature in the mold fabrication process. However, it's worth mentioning that the melting point of PCM hovers around 58-64℃, and the heat emanating from UHPC's hydration process can potentially jeopardize the integrity of the PCM mold. Hence, experimental validation of the mold shape is a prerequisite. In the conducted experiment, UHPC was poured into two distinct mold types: one that incorporated a 3mm silicone sheet mounted on the fabricated PCM mold(Panel A), and the other devoid of the silicone sheet(Panel B). The experimental outcomes revealed that Panel A possessed a thickness of 3.793mm, while Panel B exhibited a thickness of 5.72mm. This suggests that the mold lacking the silicone sheet(Panel B) was more susceptible to the thermal effects of hydration. These investigations furnish invaluable fundamental data for the manufacturing of ultra-high strength irregular panels and PCM molds. They contribute substantially to the enrichment of comprehension and application of these materials within the realm of construction.