• Title/Summary/Keyword: 비정상 탐침법

Search Result 6, Processing Time 0.02 seconds

Evaluation of Compaction and Thermal Characteristics of Recycled Aggregates for Backfilling Power Transmission Pipeline (송배전관로 되메움재로 활용하기 위한 국내 순환골재의 다짐 및 열적 특성 평가)

  • Wi, Ji-Hae;Hong, Sung-Yun;Lee, Dae-Soo;Park, Sang-Woo;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.17-33
    • /
    • 2011
  • Recently, the utilization of recycled aggregates for backfilling a power transmission pipeline trench has been considered due to the issues of eco-friendly construction and a lack of natural aggregate resource. It is important to identify the physical and thermal properties of domestic recycled aggregates that can be used as a backfill material. This paper evaluated thermal properties of concrete-based recycled aggregates with various particle size distributions. The thermal properties of the recycled aggregates and river sand provided by local vendors were measured using the transient hot wire method and the transient needle probe method after performing the standard compaction test. The needle probe method considerably overestimated the thermal resistivity of recycled aggregates especially at the dry of optimum water content because of experiencing disturbance while the needle probe is being inserted into the specimen. Similar to silica sand, the thermal resistivity of recycled aggregates decreased when the water content increased at a given dry density. Also, this paper evaluated some of the existing prediction models for the thermal resistivity of recycled aggregates with the experimental data, and developed a new prediction model for recycled aggregates. This study shows that recycled aggregates can be a promising backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

Predicting the Effective Thermal Conductivity of Some Sand-Water Mixtures Used for Backfilling Materials of Ground Heat Exchanger (지중열교환기 뒤채움재로 사용되는 모래-물 혼합물의 열전도도 예측)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.614-623
    • /
    • 2008
  • This paper presents the results of a laboratory study on the thermal conductivity of and(silica, quartzite, limestone, sandstone, granite and two masonry sands)-water mixtures used for ground heat exchanger backfilling materials. Nearly 260 tests were performed in a thermal conductivity measuring system to characterize the relationships between the thermal conductivity of mixtures and the water content. The experimental results show hat the thermal conductivity of mixtures increases with increasing dry density and with increasing water content. The most widely used empirical prediction models for thermal conductivity of soils were found inappropriate to estimate the thermal conductivity of unsaturated sand-water mixtures. An improved model using an exponential relationship to compute the thermal conductivity of dry sands and empirical relationship to assess the normalized thermal conductivity of unsaturated sand-water mixtures is presented.

Predicting the Effective Thermal Conductivity of Sand-Water Mixtures Used for Grouting Materials (그라우팅 재료로 사용되는 모래-물 혼합물의 열전도도 예측)

  • Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.761-768
    • /
    • 2008
  • This paper presents the results of a laboratory study on the thermal conductivity of sand(silica, quartzite, limestone, sandstone, granite and masonry sand)-water mixtures used in ground heat exchanger backfilling materials. Nearly 260 tests were performed in a thermal conductivity measuring system to characterize the relationships between the thermal conductivity of mixtures and the water content. The experimental results show that the thermal conductivity of mixtures increases with increasing dry density and with increasing water content. The most widely used empirical prediction models for thermal conductivity of soils were found inappropriate to estimate the thermal conductivity of unsaturated sand-water mixtures. An improved model using a exponential relationship to compute the thermal conductivity of dry sands and empirical relationship to assess the normalized thermal conductivity of unsaturated sand-water mixtures is presented.

  • PDF

Thermal Conductivity Measurement of Sand-Water Mixtures Used for Backfilling Materials of Vertical Boreholes or Horizontal Trenches (지중열교환기 수직 보어홀 및 수평 트렌치 뒤채움재로서 모래-물 혼합물의 열전도도 측정)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • This paper presents the results of a laboratory study on the thermal conductivity of sand (silica, quartzite, limestone and masonry sand)-water mixtures used in ground heat exchanger backfilling materials. Nearly 150 tests were performed in a thermal conductivity measuring system (TPSYS02) to characterize the relationships between the thermal conductivity of mixtures and the water content. The results show that the thermal conductivity of mixtures increases with increasing dry density and with increasing water content. The results also show that for constant water contents and a dry density value, the thermal conductivity of mixtures increases with increasing thermal conductivity of solid particles. The measurement results were also compared with the most widely used empirical prediction models for the thermal conductivity of soils.

Evaluation of Thermal Response Test of Energy Pile (에너지 파일의 현장 열응답 시험에 관한 연구)

  • Yoon, Seok;Lee, Seung-Rae;Kim, Min-Jun;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.93-99
    • /
    • 2014
  • Use of geothermal energy has been increased for its economical application and environmentally friendly utilization. Particularly, for energy piles, a spiral coil type ground heat exchanger (GHE) is more preferred than line type GHEs such as U and W shaped GHEs. A PHC energy pile with spiral coil type GHE was installed in an area of partially saturated dredged soil deposit, and a thermal response test (TRT) was conducted for 240 hours under a continuous operation condition. Besides, remolded soil samples from different layers were collected in the field, and soil specimens were reconstructed according to the field ground condition. Non-steady state probe methods were conducted in the lab, and ground thermal conductivity and thermal diffusivity were measured for the different soil layers. An equivalent ground thermal conductivity was calculated from the lab test results and it was compared with the field TRT result. The difference was less than 5%, which advocates the use of an equivalent ground thermal conductivity for the multi-layered ground. Furthermore, this paper also represents an equivalent ground thermal diffusivity evaluation method which is another very important design parameter.

Measurements of Void Concentration Parameters in the Drift-Flux Model (상대유량 모델내의 기포분포계수 측정에 관한 연구)

  • Yun, B.J.;Park, G.C.;Chung, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.91-101
    • /
    • 1993
  • To predict accurately the thermal hydraulic behavior of light water reactors during normal or abnormal operation, the accurate estimation of the void distribution is required. Up to date, many techniques for predicting void fraction of two-phase flow systems have been suggested. Among these techniques, the drift-flux model is widely used because of its exact calculation ability and simplicity. However, to get more accurate prediction of void fraction using drift-flux model, slip and flow regime effects must be considered more properly In the drift-flux method, these two effects are accounted for by two drift-flux parameters ; $C_{o}$ and (equation omitted). At earlier stage, $C_{o}$ is measured in a circular tube. In this study, $C_{o}$ is experimentally determined by measuring local void fraction and vapor velocity distribution in a rectangular subchannel having 4 heating rods which simulates nuclear subchannels. The measurements are peformed with two-electrical conductivity probes which are known to be adequate for measuring local parameters. The experiments are performed at low flow rate and the system pressure less than 3 atmo spheric pressure. In this experiment, (equation omitted), is not measured, but quoted from well-known empirical correlation to formulate $C_{o}$. Finally, $C_{o}$ is expressed as a function of channel averaged void fraction. fraction.

  • PDF