• Title/Summary/Keyword: 비정상 초음속 유동

Search Result 65, Processing Time 0.017 seconds

Numerical Study on Steady and Unsteady Flow Characteristics of Nozzle-Rotor Flow in a Partial Admission Supersonic Axial Turbine with Sweep Angle (스윕 각이 적용된 부분 흡입형 초음속 축류 터빈의 정상, 비정상 공력 특성에 관한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.173-179
    • /
    • 2012
  • Steady and unsteady three-dimensional RANS simulations have been performed on partial admission supersonic axial turbine having backward/forward sweep angles(${\pm}15^{\circ}$) and the results are compared with each other. The objective of this paper is to study the effect of unsteadiness on turbine flow characteristics and performances. The all results indicated that the losses of unsteady simulations were greater than those of steady cases. It was also shown that BSW model give the effect on the reducing of mass flow rates of tip leakage. In unsteady simulation, the increase of t-to-s efficiency at Rotor Out plane was observed more clearly.

  • PDF

A study of unsteady characteristics on the pintle nozzle (핀틀 노즐의 비정상 특성연구)

  • Lee, Ji-Hyung;Chang, Hong-Been;Ko, Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.662-665
    • /
    • 2011
  • Pintle technology, which is one of the thrust control method for solid rocket motor, can control the thrust by the control of nozzle throat area through the pintle moving. For studying the unsteady flow characteristics of pintle nozzle by needle type pintle moving, cold flow test and numerical analysis were performed. The pressure distribution on the pintle tip was varied for pintle moving and stopping and thrust was varied by this effects.

  • PDF

Control of the Pressure Oscillations in Supersonic Cavity Flows (초음속 공동유동에서 발생하는 압력변동의 제어)

  • Lee Young-Ki;Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The present study describes unsteady flow phenomena generated in a supersonic flow passing over a rectangular cavity and suggests a way of control of pressure oscillation, doing harm to overall performance and stable operation of aerodynamic and industrial applications. The three-dimensional, unsteady, compressible Navier-stokes equations are numerically solved based on a fully implicit finite volume scheme and large eddy simulation. The cavity flow are simulated with and without control methods, including a triangular bump and blowing jet installed near the leading edge of the cavity. The results show that the pressure oscillation is attenuated by both control techniques, especially near the trailing edge of cavity.

  • PDF

Unsteady Separation Characteristics of Air-Launching Rocket from Full-Geometry Mother Plane (초음속 공중발사를 위한 전기체-로켓의 비정상 분리 유동특성)

  • Ji, Young-Moo;Byun, Yung-Hwan;Park, Jun-Sang;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.474-482
    • /
    • 2007
  • An analysis is made for flow and rocket motion during a supersonic separation stage of an air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow fields around the rocket which is being separated from the mother plane configuration(F-4E Phantom). Simulation results clearly demonstrate the effect of shock-expansion wave interaction around both of the rocket and the mother plane. To predict the behavior of the ALR by the change of the center-of-gravity, three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rockets for safe separation is proposed.

A Quasi-Steady Method for Unsteady Flows over Surfaces with Structural Deformation (구조 변형이 있는 평면 위의 비정상 유동해석을 위한 준-정상 기법)

  • Kim, Minsoo;Lee, Namhun;Lee, Hak-Tae;Lee, Seungsoo;Kim, Heon-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In this paper, we present and verify an aerodynamic reduced-order model (ROM) based on a quasi-steady flow method to reduce the computational cost of supersonic aeroelastic analysis. For supersonic flows, especially when the characteristic time scale of the flow is small compared to that of the structural motion, the unsteadiness of flow can be negligible, and quasi-steady solutions can be used instead of the unsteady solutions for the aeroelastic analysis. Kriging method is used to build the ROM of the aerodynamics. The surface solutions from the ROM are used as the boundary conditions for the structural analysis at each time-step. The ROM is validated against the unsteady solutions.

Numerical Study of Unsteady Supersonic Flow over Tandem Cavities (초음속 비정상 직열배치공동 유동에 관한 수치적 연구)

  • Song, Byeong Ho;Park, Nam Eun;Kim, Jae Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.10-16
    • /
    • 2003
  • The unsteady supersonic flow over tandem cavities has been analyzed by the integration of Navier-Stokes equations with the k-$\varepsilon$ turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. The upwind TVD scheme based on the flux vector split with the van Leer limiters is used. The results show the principal frequency is very reasonable. The principal frequency of the rear cavity due to the front cavity has been analyzed by the combination of the several aspect ratios of cavities. In the case of the front cavity of low aspect ratio, the frequencies of tandem cavities are almost same, because two shear layers developed from each cavity are mixed and developed to one shear layer. However, in the case of the front cavity of high aspect ratio, the characteristis of frequency are very different, because the second shear layer is developed in the diffused first shear layer.

Numerical Study of Unsteady Supersonic Flow Behind a Rearward-Facing Step with Slot Injection (측면제트분사가 있는 후향계단 후류의 비정상초음속유동에 대한 수치적 연구)

  • Kim,Jong-Rok;Kim,Jae-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.97-103
    • /
    • 2003
  • Numerical research has been done for the transverse jet behind a rearward-facings step in turbulent supersonic flow without chemical reaction. Purpose of transverse jet is to enhance mixing of the fuel in the combustor. Two-dimensional unsteady flowfields generated by slot injection into supersonic flow are numerically simulated with the Navier-Stokes equations with two-equation k-$\varepsilon$ turbulence model. Numerical method is used high-order upwind TVD scheme. Eight cases are computed for different slot momentum flux ratios and slot position at downstream of the step. The flow is very similar to the cavity flow, because the jet acts as an obstacle. The numerical results thus show the periodic phenomenon.

Center-of-Gravity Effect on Supersonic Separation from the Mother Plane (무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구)

  • Ji Young-Moo;Lee Jae-Woo;Byun Yung-Hwan;Park Jun-Sang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.36-40
    • /
    • 2006
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations is numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from the mother plane configuration(F-4E Phantom). The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. To predict the behavior of the ALR according to the change of the C.G., three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

Numerical Simulation of the Screech Phenomenon in a Supersonic Jet (수치계산에 의한 초음속 제트에서의 스크리치 현상 해석)

  • Kim, Yong-Seok;Kim, Sung-Cho;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.329-334
    • /
    • 2007
  • An axisymmetric supersonic jet screech in the Mach number range from 1.07 to 1.2 is numerically simulated. The axisymmetric mode is the dominant screech mode for an axisymmetric jet. The Reynolds-averaged Navier-Stokes equations in the conjunction with modified Spalart-Allmaras turbulence model are employed. A high resolution finite volume essentially non-oscillatory(ENO) schemes are used along with nonreflecting characteristic boundary conditions that are crucial to screech tone computations to accurately capture the sound waves, shock-cell structures, unsteady shock motions and large-scale instability waves.

  • PDF

Control of the Pressure Oscillation in a Supersonic Cavity Flow Using a Sub-cavity (Sub-cavity를 이용한 초음속 공동유동의 압력진동 제어)

  • Lee Young-Ki;Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.310-313
    • /
    • 2006
  • The present study aims at investigating the effectiveness of a new passive cavity flow control technique, sub-cavity. The characteristics of cavity flow oscillation with the device are compared with those with other control techniques tested previously, including a triangular bump and blowing jet. In the computation, the three-dimensional, unsteady Navier-Stokes equations governing the supersonic cavity flow are solved based on an implicit finite volume scheme spatially and multi-stage Runge-Kutta scheme temporally. Large eddy simulation (LES) is carried out to properly predict the turbulent features of cavity flow. The present results show that the pressure oscillation near the downstream edge dominates overall time-dependent cavity pressure variations, and the amplitude of the pressure oscillation can be reduced in the presence of a sub-cavity.

  • PDF