• Title/Summary/Keyword: 비정상 열해석

Search Result 158, Processing Time 0.026 seconds

가스 발생기를 이용한 수직발사 사출 시스템에 관한 해석적 연구

  • 변종렬;오종윤;황용석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.28-28
    • /
    • 1999
  • 본 연구에서는 가스 발생기에서 발생되는 고온, 고압의 가스를 이용하여 유도탄을 수직 발사하는 사출 시스템에 대해 해석적 연구를 수행하였다. 사출 시스템에 의한 수직발사 방식은 발사관내에 설치된 가스 발생기에 의해 생성된 가스가 사출 실린더의 피스톤을 구동시켜, 피스톤에 연결된 유도탄을 요구되는 높이로 사출 시킨 후 유도탄이 점화되는 발사방식이다. 이러한 발사방식은 유도탄 자체의 부스터 발사방식에 비해 유도탄의 화염에 의한 영향이 적다. 현재 사출 시스템은 가스발생기, 가스 튜브, 사출 실린더와 피스톤으로 구성되어있다. 본 논문은 가스 발생기에서 사출 실린더까지의 내부 유동장을 일차원적으로 모델링하였고, 가스발생기, 가스튜브, 실런더 내의 유동과 열전달 과정 및 유도탄의 동적거동에 대한 미분방정식을 연립하여 4th-order Runge-Kutta 방법으로 계산하였다. 또한 가스튜브와 사출 실린더의 열전달 손실에 대하여 1차원 비정상 열전도 방정식의 수치적 계산을 통해 에너지 손실을 계산하였다. 특히 해석에 사용된 작동유체인 추진제 가스의 열학적 상태량은 온도 함수의 5차 다항식으로 표현하여 사용하였다. 이론적인 해석을 통해 사출 장치 시스템의 성능 요구조건과 신뢰성을 만족시키기 위한 가스발생기의 추진제 그레인 및 사출 시스템 설 계 조건을 도출하였다.

  • PDF

Analysis of Bifurcated Superstructure of Nonlinear Ocean System (비선형 해양시스템의 분기된 초구조에 대한 연구)

  • 마호성
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.96-106
    • /
    • 1998
  • 본 연구에서는 복잡한 비선형시스템의 전체적 응답거동의 중요한 (그리고 잠재적으로 유익한) 특성을 상세히 분석하였다. 특히 강성도 및 여기력에 내재된 복잡한 비선형을 소유하는 수중다점계선해양시스템의 분기집합에 내재된 초구조와 혼돈거동의 가능경로에 대하여 해석적 및 수치적으로 분석하였다. 분기는 국부적 안정해석을 통하여 매개변수 영역상에서 확인되었으며, 정상 상태의 분기초구조는 수치해석을 통하여 밝혀졌다. 비선형정도와 해의 차원을 나타내는 공명수를 유도하였으며, 차수공명수를 통해 공명주위의 구조를 밝혔으며 열조화, 울트라조화, 울트라열조화 등과 같은 고도의 비선형 응답의 발생을 예측할 수 있음을 보였다. 결과에서 얻은 초구조는 시스템의 안정성과 이상끌개의 징후를 지배하는 메커니즘임도 밝혔다. 혼돈으로 가는 주기증가의 무한시퀀스에 대한 유연한 변환 외에 돌연한 격발(saddle에 의해 분리된 인접끌개의 충돌)로 인한 혼돈으로의 가능경로도 발견되었으며 이는 수치적으로도 입증되었다.

  • PDF

A study on the transient characteristics during speed up of inverter heat pump (회전수 상승폭 변화에 따른 인버터열펌프의 비정상 운전특성)

  • 황윤제;김호영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.495-507
    • /
    • 1998
  • The transient characteristics of a 4.0㎾ inverter driven heat pump was investigated by theoretical and experimental studies. The heat pump used in this study consists of a high side scroll compressor and $\Phi$7 compact heat exchangers with two capillary tubes. A series of tests was peformed to examine the transient characteristics of heat pump in heating and cooling mode when the operating speed was varied from 30Hz to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. A cycle simulation model has been developed to predict the cycle performance under frequency rise-up conditions, and the results of theoretical study were compared with the results of experimental study. The theoretical model was driven from mass conservation and energy conservation equations to predict the operation points of refrigerant cycle and the performances at various operating speeds. For transient conditions, the simulated results are in good agreement with the experimental results within 10%. The transient cycle migration of the liquid state refrigerant causes a significant dynamic change in system. Thus, the migration of refrigerant is the most important factor whenever An experimental analysis is performed or A simulation model is developed.

  • PDF

Numerical Analysis of Unsteady Heat Transfer for the Location Selection of Anti-freeze for the Fire Protection Piping with Electrical Heat Trace (소방 배관 동파방지용 열선의 위치 선정을 위한 비정상 열전달 수치해석)

  • Choi, Myoung-Young;Lee, Dong-Wook;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • In this paper, the unsteady incompressible Navier-Stokes equations coupled with energy equation were solved to find out the optimal location of electrical heat trace for anti-freeze of water inside the pipe for fire protection. Since the conduction equation of pipe was coupled with the natural convection of water, the analysis of conjugate heat transfer was conducted. A commercial code (ANSYS-FLUENT) based on SIMPLE-type algorithm was used for investigating the unsteady flows and temperature distributions in water region. From the numerical experiments, the isotherms and the vector fields in water region were obtained. Furthermore, it was found that the lowest part of the pipe cross-section was an optimal position of electrical heat trace assuming the constant thermal expansion coefficient of water since the minimum temperature of the water with the position is higher than those with the other positions.

Numerical Analysis of Unsteady Heat Transfer for Location Selection of CPVC Piping (CPVC 배관 동파방지용 열선의 위치 선정을 위한 비정상 열전달 수치해석)

  • Choi, Myoung-Young;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.33-39
    • /
    • 2015
  • In this paper, a numerical experiment was conducted to find out the optimal location of electrical heat trace for anti-freeze of water inside the CPVC pipe for fire protection. The unsteady incompressible Navier-Stokes equations coupled with energy equation were solved. Since the conduction equation of pipe was coupled with the natural convection of water, the analysis of conjugate heat transfer was conducted. A commercial code (ANSYS-FLUENT) based on SIMPLE-type algorithm was used for investigating the unsteady flows and temperature distributions in water region. From the present numerical experiment, it has been found that the vector field of water inside the PVC pipe is opposite to the case of steel because of the huge difference of material properties of the two pipes. Furthermore, it was found that the lowest part of the pipe was an optimal position for electrical heat trace since the minimum water temperature of the case was higher than those of the other cases.

Thermal flow intensity factor for non-homogeneous material subjected to unsteady thermal load (비정상 열 하중을 받는 이질재료의 열량 집중 계수 해석)

  • Kim, Gui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.26-34
    • /
    • 2008
  • This article provides a comprehensive treatment of cracks in non-homogeneous structural materials such as functionally graded materials (FGMs). It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using laminated composite plate model to simulate the material non-homogeneity, we present an algorithm for solving the system based on Laplace transform and Fourier transform techniques. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with arbitrarily varying material properties. As a numerical illustration, transient thermal flow intensity factors for a metal-ceramic joint specimen with a functionally graded interlayer subjected to sudden heating on its boundary are presented. The results obtained demonstrate that the present model is an efficient tool in the fracture analysis of non-homogeneous material with properties varying in the thickness direction.

  • PDF

A Study on System Stress Analysis of High Temperature Plant Piping with Expansion Joints and Load Hangers (신축이음과 하중행거가 함께 설치된 고온플랜트 배관계의 시스템응력 해석 연구)

  • Park, Do Jun;Yu, Jong Min;Han, Seung Yeon;Yoon, Kee Bong;Kim, Ji Yoon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.116-124
    • /
    • 2014
  • In the plants operated under high temperature condition, piping system load analysis is often performed to prevent accidents caused by thermal deformation and also to locate inspection prioritity points of the piping system. In this study, piping system stress analysis was performed for a pipe system between the reactors in a process plant. The piping system includes typically installed hangers and expansion joints. In order to evaluate the effects of structural components such as hangers and expansion joints, the case for the expansion joint or the hanger under abnormal operation is considered. By comparison anlaysis results of piping system during normal operation and abnormal operation, the role of each pipe components are studied.

Numerical Investigation of Flowing Process for Regenerative Beat Exchanger of a Gas Turbine Engine (가스터빈 리제너레이토 내부유동에 관한 수치해석적 연구)

  • Kim Soo Yong;Kovalevsky Valeri P;Goldenberg Victor
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.109-121
    • /
    • 2004
  • A distributed nonlinear mathematical model for investigation of regenerative heat exchangers of both a continuous and periodic operation is described in the paper. The non-iterative numerical integration scheme for conjugate unsteady heat exchange problem of one dimensional flows and two dimensional matrix wall conductivity is developed. Case study of a regenerative heat exchanger with a rotary ceramic matrix is presented. The range of optimum rotation rates of the regenerator providing the greatest calorific efficiency is determined.

A Study on the Estimation of Temperature in Track Components due to Hystresis Loss. (히스테리시스 손실에 의한 괘도부품의 온도 추정에 관한 연구)

  • Kim, H.J.;Kim, B.T.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.48-55
    • /
    • 2001
  • In many applications. rubber components undergo dynamic stresses or deformations of fairly large magnitude. Since rubbers are not fully elastic, a part of the mechanical energy is converted into heat due to the hysteresis loss. Heat generation without adequate heat dissipation leads to heat build up. i. e. internal temperature rise. The purpose of this paper is to predict temperature rise caused by the hysteresis loss, in a rubber pad subjected to complex dynamic deformation. In this unsteady thermal analysis, the temperature distributions of track components are displayed in contour shapes and the temperature variations of some important nodes are represented graphically with respect to the running time of the tank.

  • PDF

Prediction of Thermo-acoustic Oscillation Characteristics in a Ducted Combustor (관형 연소기의 열-음향 진동에 의한 소음 특성 예측)

  • 김재헌;이정한;이수갑;정인석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.56-66
    • /
    • 1999
  • Thermoacoustic oscillation is a significant problem in cylindrical-type combustors such as common internal combustion engines, industrial furnaces, gas turbine, etc. This kind of low frequency oscillation can lead to serious consequences such as destruction of the combustor and production of strong noise. The accurate numerical simulation of thermoacoustic phenomena is a complex and challenging problem, especially when considering the chemical reaction of mixtures. As with other simulations of aerodynamics and aeroacoustics, the direct computation of thermoacoustic phenomena requires that Navier-Stokes equations be solved using accurate numerical differentiation and time-marching schemes, with non-reflecting boundary conditions. The numerical approach used here aims at qualitative analysis and efficient prediction of those problems, not at the development of an accurate scheme. The numerical prediction developed in this work is shown to be reasonably matched with experimental result.

  • PDF