• Title/Summary/Keyword: 비정상패널법

Search Result 23, Processing Time 0.029 seconds

Prediction of Unsteady Performance of a Propeller by Using Potential-Based Panel Method (포텐셜을 기저로 한 패널법에 의한 프로펠러의 비정상유동해석)

  • I.S. Moon;Y.G. Kim;C.S. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.9-18
    • /
    • 1996
  • This paper describes a potential-based panel method for the prediction of unsteady performance of a marine propeller operating in a non-uniform flow field. Boundary-value problem, formulated by distributing the normal dipoles and sources on the blade, the hub and the shed wake, is descretized and numerically analyzed in a discretized time domain. Through an extensive test and comparison with the analytic solution, the convergence in time step is verified for a two-dimensional foil. Unsteaty analysis is then carried out for the DTRC 4118 propeller operating in a harmonic wake, and compared favorably with the experimental result. The present method is shown applicable to the analysis of unsteady performance of the propellers.

  • PDF

Analysis of Steady and Unsteady Performance for 3-D Surface Effect Wing (3차원 표면효과익의 정상 및 비정상 성능해석)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.14-25
    • /
    • 1998
  • This paper describes the numerical modelling for the steady and unsteady forces of 3-D wings flying near the free surface based on a potential based panel method. For the steady problem where a wing flies over the fixed float surface, steady lift and drag forces are calculated for wings with and without end-plates having different sections, angle of attacks, aspect patios and flying heights. These numerical results are compared with the wind tunnel test results. The unsteady problem is treated as a boundary value one where a wing flies over the described wavy surface. The unsteady lift force variations of a wing due to different wave lengths and heights are calculated at different flying heights.

  • PDF

Thrust Characteristics of Dual Flapping Airfoils in a Biplane Configuration (복엽기 배치의 복식 플랩핑 에어포일들의 추력 특성)

  • Yu, Young-Bok;Han, Cheol-Heui;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.9-17
    • /
    • 2005
  • The wake patterns and thrust characteristics of dual flapping airfoils in a biplane configuration are investigated using an unsteady panel method. To trace complicated wake shapes behind airfoils, a core addition scheme, a vortex core model, and the fourth order Runge-Kutta convection scheme are employed. Present results are verified by comparing them with flow visualization, exact solution and published computed results. The thickness and camber of thick airfoils has an effect of decreasing thrust. The airfoils produce maximum thrust when the phase angles between plunging and pitching motions are both 90 and 120 degrees. Thrust increases as the plunge velocity is increased, which is also found as the pitch amplitude is stepped up. Thrust decreases when the distance between the airfoils is less than 0.6c.

A Comparison of BLS Non-Response Adjustment and Cross-Wave Regression Imputation Methods (BLS 무응답 보정법을 이용한 대체법과 이월대체법에 관한 연구)

  • Lee, Sang-Eun;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.909-921
    • /
    • 2010
  • Cross-wave regression imputation and carry-over imputation method are generally used in the analysis of panel data with missing values. Recently it is known that the BLS non-response adjust method has good statistical properties. In this paper we show that the BLS method can be considered as an imputation method with a similar formula of a ratio-estimator. In addition, we show that the carry-over imputation and BLS imputation are approximately the same under the assumption that data follow a non-stationary process with drift. Small simulation studies and real data analysis are performed. For the real data analysis, a monthly labor statistic (2007) is used.

Development and Validations of the Aerodynamic Analysis Program of Multi-Rotors by Using a Free-Wake Method (자유후류 기법을 이용한 다중로터 공력해석 프로그램의 개발 및 검증)

  • Park, Sang-Gyoo;Lee, Jae-Won;Lee, Sang-Il;Oh, Se-Jong;Yee, Kwang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.859-867
    • /
    • 2007
  • The objective of this study is to develop and validate a numerical method which can handle the multi-rotor aerodynamic characteristics. For the purpose of power estimation, table look-up method is implemented to the existing unsteady panel code that is coupled with a time-marching free wake model. Also, the Reynolds number scaling is implemented for the application to various regions of Reynolds number. The computed results are validated against the available experimental data for coaxial and tandem rotors. In the validation case for the coaxial rotor, more accurate result is acquired when the thickness effect is considered. The wake instability problem occurs at a particular separation distance between the rotors for tandem rotors. The wake instability is avoided by setting the single-rotor wake geometry as the initial wake geometry for the multi-rotor analysis. The estimated result for rotor separation effect is compared with the result of the momentum theory.

Computation of the Hydrodynamic Coefficients of Ships in Waves by Rankine Source Panel Methods (랜킨소오스 패널법을 이용한 파랑중 선박의 동유체력계수 계산)

  • Jin-Ho Yang;Ki-Jong Song;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.43-51
    • /
    • 2001
  • The unsteady problems of ships in waves are analyzed by a low order panel method with Rankine source. Considering the basic flow as the uniform incoming flow(so called Kelvin flow) and also the double body flow. the solutions to satisfy the governing equation with the boundary conditions are obtained, and these two results are compared. The hydrodynamic coefficients for the modified Wigley hull and Series 60($C_B=0.7$) are computed and compared with the experimental data available and also other computational results published. It is shown that the computational results by the double body approximation agree well with the experimental results compared with those by the uniform Kelvin flow approximation.

  • PDF

Predicting claim size in the auto insurance with relative error: a panel data approach (상대오차예측을 이용한 자동차 보험의 손해액 예측: 패널자료를 이용한 연구)

  • Park, Heungsun
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.697-710
    • /
    • 2021
  • Relative error prediction is preferred over ordinary prediction methods when relative/percentile errors are regarded as important, especially in econometrics, software engineering and government official statistics. The relative error prediction techniques have been developed in linear/nonlinear regression, nonparametric regression using kernel regression smoother, and stationary time series models. However, random effect models have not been used in relative error prediction. The purpose of this article is to extend relative error prediction to some of generalized linear mixed model (GLMM) with panel data, which is the random effect models based on gamma, lognormal, or inverse gaussian distribution. For better understanding, the real auto insurance data is used to predict the claim size, and the best predictor and the best relative error predictor are comparatively illustrated.

Empirical Study on the Semi-Endogenous Growth Theory and Fully Endogenous Growth Theory in OECD Countries (OECD국가의 준 내생적 성장이론 및 완전한 내생적 성장이론에 대한 실증고찰)

  • Cho, Sang Sup;Yang, Youngseok;Kang, Shin-Won
    • International Area Studies Review
    • /
    • v.12 no.3
    • /
    • pp.153-169
    • /
    • 2008
  • This paper examines the recently empirical test for the two types of endogenous growth models, which one is more fitted to real data. We adopt the non-stationary panel data methodologies for seeking empirical implication by using productivity and R&D data in the OECD over the past two decades. The Empirical tests show that there is a robust relationship Total Factor Productivity and R&D variables implied by semi-endogenous growth model. The relationship suggested by fully endogenous growth theory, however, is sensitive to R&D variables. Therefore, the estimation results provide empirical evidence in favour of endogenous growth theory of R&D expenditure role for sustaining economic growth. The sustained Total Factor Productivity, however, is maintained by more increasing R&D inputs for overcoming diminishing return to R&D efforts.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF