• Title/Summary/Keyword: 비접촉 평면구동기

Search Result 4, Processing Time 0.019 seconds

A Study on the Magnetic Suspension Type Linear Actuator for a Non-contact Surface Actuator (비접촉 평면구동기를 위한 자기 서스펜션방식 직선구동기)

  • Lee, Sang-Heon;Jung, Kwang-Suk;Baek, Yoon-Su
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.735-740
    • /
    • 2001
  • With the development of micro-technology, the demand for micro actuator is increasing. But, it is difficult to achieve high resolution and long travel range simultaneously with the conventional actuators. So, the noncontact surface actuator was proposed. This actuator can realize high dynamic range and the planar motion without complex cross-axis linear slides. This paper describes a magnetically suspended linear actuator for developing a non-contact surface actuator. The operating principle and the structure of the proposed linear actuator are similar to switched reluctance motor, but the proposed linear actuator utilizes normal force and propulsion force simultaneously. With this characteristic, the system can be simpler than other non-contact surface actuator.

  • PDF

A Study on the Driving Principles of a Novel Non-contact Surface Actuator Using Combination of Magnetic Force (비접촉 평면 구동기의 자기력 조합 방식 구동 원리)

  • Jung, Kwang-Suk;Baek, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.115-121
    • /
    • 2001
  • In micro automation technology, the concurrent realization of a high resolution and a large operating rage has been achieved by a dual actuator, usually called by piggy-back system, conventionally. But, because of its manufacturing cost, the complexity of control, and the limit of overall bandwidth, the contract-free and single servo actuators have been suggested with specific applications. In this paper, we suggest a novel non-contact surface actuator suing combination of the Lorentz force and the magnetized force, and discuss the actuating principles including an analytical approach. Differently from the existing planar system, an operating range of the suggested system can be expanded by an additional attachment of active elements. Therefore, it is estimated to be suitable for the next-generation moving system.

  • PDF

Dynamic Analysis of the Contact-free Surface Actuator (비접촉식 평면구동기의 동특성해석)

  • 이상헌;백윤수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.663-670
    • /
    • 2003
  • As the micro-technologies in the high precision manufacturing processes are developed, the demand for micro actuating device is increasing. But, it is difficult to achieve high resolution and wide operating range simultaneously with the conventional actuating systems which are contacting and type of dual servo system. So, the contact-free surface actuators whose movers are suspended or levitated were proposed. These systems can be applied to high precision stages and alignment apparatuses. The suspended mover can be assumed to be rigid body, but the mover is a structure in this study, therefore the vibration caused during the operating process has a serious adverse effect on the performance and it is very important to identify the vibrational characteristics. In this paper, a contact-free surface actuator is modeled in finite element method and updated by using the experimental modal data. Finally, the static and dynamic characteristics of the finite element model are predicted and then discussed.

A Novel Measuring Method of In-plane Position of Contact-Free Planar Actuator Using Binary Grid Pattern Image (이진 격자 패턴 이미지를 이용한 비접촉식 평면 구동기의 면내 위치(x, y, $\theta$) 측정 방법)

  • 정광석;정광호;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.120-127
    • /
    • 2003
  • A novel three degrees of freedom sensing method utilizing binary grid pattern image and vision camera is presented. The binary grid pattern image is designed by Pseudo-Random Binary Arrays and referenced to encode in-plane position of a moving stage of the contact-free planar actuator. First, the yaw motion of the stage is detected using fast image processing and then the other planar positions, x and y, are decoded with a sequence of images. This method can be applied to the system that needs feedback of in-plane position, with advantages of a good accuracy and high resolution comparable with the encoder, a relatively compact structure, no friction, and a low cost. In this paper, all the procedures of the above sensing mechanism are described in detail, including simulation and experiment results.