• Title/Summary/Keyword: 비접촉 센서

Search Result 332, Processing Time 0.044 seconds

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare (스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Koo, Hye-Ran;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Jeong-Hwan;Kwak, Hwy-Kuen;Ko, Yun-Su;Oh, Yun-Jung;Park, Su-Youn;Kim, Sin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.63-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.

Application of a Fiber Fabry-Pérot Interferometer Sensor for Receiving SH-EMAT Signals (SH-EMAT의 신호 수신을 위한 광섬유 패브리-페롯 간섭계 센서의 적용)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.165-170
    • /
    • 2014
  • Shear horizontal (SH) waves propagate as a type of plate wave in a thin sheet. The dispersion characteristics of SH waves can be used for signal analysis. Therefore, SH-waves are useful for monitoring the structural health of a thin-sheet-structure. An electromagnetic acoustic transducer (EMAT), which is a non-contact ultrasonic transducer, can generate SH-waves easily by varying the shape and array of magnets and coils. Therefore, an EMAT can be applied to an automated ultrasonic testing system for structural health monitoring. When used as a sensor, however, the EMAT has a weakness in that electromagnetic interference (EMI) noise can occur easily in the automated system because of motors and electric devices. Alternatively, a fiber optic sensor works well in the same environment with EMI noise because it uses a light signal instead of an electric signal. In this paper, a fiber Fabry-P$\acute{e}$rot interferometer (FFPI) was proposed as a sensor to receive the SH-waves generated by an EMAT. A simple test was performed to verify the performance of the FFPI sensor. It is thus shown that the FFPI can receive SH-wave signals clearly.

A study on sensing for abnormality of BUS BAR in motor control center (모터컨트롤센터의 BUS BAR 이상 감지를 위한 실험적 연구)

  • Kim, Sung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5838-5842
    • /
    • 2011
  • The study mainly aims to explore how deterioration of motor control center, namely MCC, and vibration put impact on temperature of bus bar as well as temperature change of bolt-nut joint. The motor control center consists of three internal parts (i.e. R, S, T) which are for motor operation of high capacity. Two dimensional mechanism for measuring temperature was designed and manufactured with infrared temperature sensor. Installing it in inner motor control center enabled researcher to monitor temperature of bus bar as well as amount of change of current regularly. Temperature change of bus bar according to load was primarily examined based on a bolted joint in the experiment. It was clearly verified that temperature change of bus bar was proportional to current consumption. Therefore, installing non-contact two dimensional mechanism for measuring temperature in motor control center would be expected to prevent temperature rise owing to overload current and power outage as well as fire accident which can be triggered by poor electrical contact.

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

Development of Frequency Weighing Sensor and Single Crystal Growth (새로운 무게센서 재발과 단결정성장(1))

  • Jang Y.N.;Sung N.H.;Chae S.C.;Bae I.K.;Kim I.J.
    • Korean Journal of Crystallography
    • /
    • v.8 no.1
    • /
    • pp.38-47
    • /
    • 1997
  • A new weighing sensor for the automatic diameter control system of the crystal growth is developed in this study. This weighing sensor measures the frequency of the vibrating element which is lineally changing with respect to weight. The signal and the power of this system are transmitted without any physical contact, so that this sensor offers high accuracy and resolution. This system consists of a string, a sinusoidal wave generator, an automatic amplification adjusting circuit, signal transformers and a PCB. 4 kinds of programs are developed for checking DAC, weight calibration and controlling growth process. The measurements of the standard deviation and the resolution show $\pm0.10g$(measured at every second) and $5{\times}10^{-5}$, respectively, This weighing sensor is effective under high pres-sure of 200 atm, high temperature and vacuum condition. The weighing system can control the temperature in the accuracy of $\pm0.025^{\circ}C$ with the 'signal divider'. The optical quality single crystals of $(YGd)_3Sc_2Ga_3O_{12},\;Er-Y_3Sc_2Al_3O_{12},\;and\;Bi_{12}GeO_{20}$ have been grown by Czo-chralski method using this auto-diameter control system.

  • PDF

Pressure Sensitive Device Using Conductive and Porous Structures (전도성 다공성 구조 압력감지소자)

  • So, Hye-Mi;Park, Cheolmin;Chang, Won Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.601-605
    • /
    • 2014
  • Porous conductors are known to demonstrate excellent electrical, mechanical, and chemical resistance. These porous conductors demonstrated potential applications in various fields such as electrodes for supercapacitors, flexible heaters, catalytic electrodes, and sorbents. In this study, we described a pressure sensitive device using conductive and porous sponges. With an extremely simple "dipping and drying" process using a single-walled carbon nanotube (SWCNT) solution, we produced conductive sponges with sheet resistance of < $30k{\Omega}/sq$. These carbon nanotube sponges can be deformed into any shape elastically and repeatedly compressed to large strains without collapse. The pressure sensors developed from these sponges demonstrated high resistance change under pressure of up to a half of their initial resistance.

A Study on Tactile Sensation Application for Computer Game and Virtual Reality (컴퓨터게임과 가상현실을 위한 촉각 응용에 관한 연구)

  • 이영재
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.646-654
    • /
    • 2002
  • The human sense of touch provides us with an important source of information about our surroundings. Because of its unique position at interface between our bodies and the out world, touch sensation supplies sensory data which helps us manipulate and recognize objects and warn of harmful situation. But tactile sensation was recognized less important than visual sense and auditory sense but it plays an important immersing role in virtual reality and computer game. Tactile sensation can be used to influence to objects according to power and supplied sensory feedback to the player in a virtual environment. This paper investigated the characteristics of tactile sensation of human being and proposed method of sturdy using force sensing sensor, simple force modeling and data structure form for virtual reality and computer game. As a result, force distribution, depth, center point can be calculated using sensor output and this information is very effective to specific position for actions and reactions. This study can used as basic information for tactile sensation and it's application in computer game and virtual realty.

  • PDF

Nondestructive Buckling Load Prediction of Pressurized Unstiffened Metallic Cylinder Using Vibration Correlation Technique (Vibration Correlation Technique을 이용한 내부 압력을 받는 금속재 단순 원통 구조의 비파괴적 전역 좌굴 하중 예측)

  • Jeon, Min-Hyeok;Kong, Seung-Taek;Cho, Hyun-Jun;Kim, In-Gul;Park, Jae-Sang;Yoo, Joon-Tae;Yoon, Yeoung-Ha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.75-82
    • /
    • 2022
  • Nondestructive method to predict buckling load for the propellant tank of launch vehicle should be evaluated. Vibration correlation technique can predict the global buckling load of unstiffened cylindrical structure with geometric initial imperfection using correlation of natural frequency and compressive load from compressive test below the buckling load. In this study, vibration and buckling tests of a thin metal unstiffened propellant tank model subjected to internal pressure and compressive loads were performed and the test results were used for VCT to predict global buckling load. For the vibration test of thin structure, non-contact excitation method using a speaker was used. The response was measured with piezoelectric polymer(PVDF) sensor. Prediction results of VCT were compared with the measured buckling load in the test and the nondestructive global buckling load prediction method was verified.

Development of Pill Counting Algorithm and Pill Counting Machine Using Non-contact Photo Sensor (비접촉식 광학센서를 이용한 알약계수 알고리즘과 알약 계수기의 개발)

  • Lee Soon-Geul;Lim Tae Gyoon;Rhim Sungsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.810-815
    • /
    • 2005
  • As the pharmaceutical industry grows and becomes more competitive, the need of automation increases to establish effective mass production and to maintain consistent quality control. Accurate counting and packing of medicinal pills is one of the most essential processes that the automation can benefit. In conventional automated counting and packing processes, the performance of counting process varies with the size, the shape and the dispersion degree of pills. In this research, the authors developed a new pill-counting algorithm based on carefully analyzed characteristics of the pill-drop behavior. Also a new scheme for the packing of an exact number of pills has been implemented. A pill counting and packing machine with the new pill-counting algorithm and the new packing scheme has been constructed and put in an actual production line. To achieve precise and quick sensing of pills dropping at a high speed from the preceding processors, the machine uses non-contact photo sensors. Experimental results from the actual process using the machine are included to verify the effectiveness of the proposed algorithm and the machine.

Introducing Depth Camera for Spatial Interaction in Augmented Reality (증강현실 기반의 공간 상호작용을 위한 깊이 카메라 적용)

  • Yun, Kyung-Dahm;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.62-67
    • /
    • 2009
  • Many interaction methods for augmented reality has attempted to reduce difficulties in tracking of interaction subjects by either allowing a limited set of three dimensional input or relying on auxiliary devices such as data gloves and paddles with fiducial markers. We propose Spatial Interaction (SPINT), a noncontact passive method that observes an occupancy state of the spaces around target virtual objects for interpreting user input. A depth-sensing camera is introduced for constructing the virtual space sensors, and then manipulating the augmented space for interaction. The proposed method does not require any wearable device for tracking user input, and allow versatile interaction types. The depth perception anomaly caused by an incorrect occlusion between real and virtual objects is also minimized for more precise interaction. The exhibits of dynamic contents such as Miniature AR System (MINARS) could benefit from this fluid 3D user interface.

  • PDF