• Title/Summary/Keyword: 비접촉식 방식

Search Result 140, Processing Time 0.03 seconds

Design of a non-contacting single infrared sensor for high frequency dental casting machine (치과용 고주파 주조기를 위한 비접촉 단일 온도센서 설계)

  • Hwang, In;Won, Yonggwan;Lee, Sang-Hun;Song, Sung-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1546-1552
    • /
    • 2016
  • In addition, because it uses preheating to dissolve an alloy in general, it is hard to regulate the appropriate melting temperature of the alloy and brewing time and shows the defect of the supplementation thing due to the super-heating. Once the alloy is molten and then most of the casting by attaching a sight glass or non-contact temperature sensor is suitable casting temperature the operator pressing a button to generate a centrifugal force to inject the molten alloy into a crucible in the casting ring. These results, and most of the cast temperature is too high or too low to generate a lot of casting defects do not get into a uniform cast body. In this paper, we developed a dental casting machine for high frequency using a single temperature sensor which can measure the actual temperature of the alloy than the temperature of the external non-contact measurement using a temperature sensor.

A Train Locating Device Using the Current Phase Difference Upon Magnetic Field Variation (자기장 변화에 따른 전류 위상차를 이용한 열차 위치검지 장치)

  • Choi, Jae Sik;Kim, Baik;Rho, Sung Chan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.604-608
    • /
    • 2012
  • Traditionally, the track circuits have been used for the purpose of train locating. However, the recent train control systems like a CBTC(Communications Based Train Control) do not utilize the track circuits to minimize the amount of ground signal devices. Therefore, there are increasing concerns over the system that can locate the position of train exactly without using the track circuits. Then, the contactless locating methods are added to ensure safety when the shunting sensitivity of the track circuit becomes low for the existing sections equipped with the track circuits. In this paper, a prototype of train locating device has been designed and tested, which utilizes the current phase difference upon magnetic field variation. The results show improved features of this method over the conventional track circuits method.

Implementation of Water Depth Indicator using Contactless Smart Sensors (비접촉식 스마트센서 기반 수위측정 방법 구현)

  • Kim, Minhwan;Lee, Jinhee;Song, Giltae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.733-739
    • /
    • 2019
  • Water level measurement is highly demanding in IoT monitoring areas such as smart factory, smart farm, and smart fish farm. However, existing water level indicators are limited to be used in industrial fields as commercial products due to the high cost of sensors and the complexity of algorithms used. In order to solve these problems, our paper proposed methods using an infrared distance sensor as well as a hall sensor for the water level measurement, both of which are contactless smart sensors. Data errors caused by the inaccuracy of existing sensors were decreased by applying new simple structures so that versatility is enhanced. The performance of our method was validated using experiments based on simulations. We expect that our new water depth indicator can be extended to a general-purpose water level monitoring system based on IoT technology.

초고속열차의 과거, 현재 그리고 미래

  • Han, Yeong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • 최근 지구온난화 및 원유 공급 감소 또는 고갈로 에너지 효율성 높고 저탄소 녹색성장을 주도할 수 있는 철도산업에 대한 관심이 고조되고 있다. 초고속 자기부상철도는 에너지 효율이 높은 경제적인 교통수단으로써, 단위 수송당(인-km) 온실가스 배출량이 자동차의 38%, 항공기의 17%에 불과하고, 같은 궤도운송시스템인 고속철도에 비해서도 77%에 불과하고 단위수송당 에너지 소비율이 항공기의 80% 수준에 불과하므로, 화석에너지의 고갈이 예상되는 미래에 장거리 고속 이동 수단으로써 중요성이 확대되고 있다. 또한, 비접촉 추진 방식이므로 바퀴 접촉식 고속철도에 비해서 유지보수 비용이 저렴하고(34%에 불과) 고속철도에 비해 10dB 이상 소음 발생이 적은 수명주기 비용 및 환경측면에서 기존 철도시스템에 비해서 경쟁력이 있으므로 시급한 개발과 활용이 요구되고 있다. 본 연구에서는 초고속 자기부상철도 연구와 관련된 국내외 연구동향과 함께, 국가연구개발사업으로 추진중인 초고속 자기부상철도 핵심기술개발사업에 대해 살펴보았다. 또한, 미래기술로 각광을 받고 있는 튜브트레인 기술에 대해서도 알아보았다.

  • PDF

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare (스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Koo, Hye-Ran;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Jeong-Hwan;Kwak, Hwy-Kuen;Ko, Yun-Su;Oh, Yun-Jung;Park, Su-Youn;Kim, Sin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.63-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.

A comparative study on discharge measurement using multi-point radar surface velocity meter (다회선 표면유속 측정시스템을 이용한 유량측정 비교 연구)

  • Yeong Seon Yun;Sang Uk Cho;Se Hwan Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.369-369
    • /
    • 2023
  • 표면유속계는 비접촉식으로 하천의 유량을 측정하는 방식이기 때문에 효율적이며, 특히 홍수발생시 안전한 측정이 가능하다. 이러한 비접촉식 방식이 갖는 장점으로 인해 홍수기 측정에 표면유속계가 널리 활용되고 있다. 하지만 포인트 방식의 표면유속계의 경우에도 측점마다 측정장비를이동하는 과정에서 어느 정도의 측정시간이 소요되며, 측정 시마다 기본적으로 최소 2~3인의 인력을 필요로 한다. 최근 발생하는 홍수사상은 돌발강우에 의해 발생할 뿐만 아니라 단시간 내에 급격한 수위 및 유량변화가 발생하기 때문에 대응하기 매우 어려우며 특히, 야간에 발생하는 호우사상은 야간측정에 따른 안전 사고가 발생할 우려가 있다. 따라서 본 연구에서는 홍수 시 유량측정에 효율적으로 대응할 수 있는 방안으로 다회선 표면유속계를 이용한 유량측정방법을 실제 하천에 적용하고 표면유속을 이용한 다양한 유량산정방법을 실측결과와의 비교를 통해 적용성을 검토하였다. 표면유속계는 다회선 구성이 가능한 레이다유속계(RQ-30) 5대를 활용하였으며, 금강 본류에 위치한 세종시(햇무리교) 관측소를 대상으로 홍수기 유량측정을 수행하였다. 표면유속을 이용한 유량산정방법으로는 5개 유속계의 측정구간을 합산하는 중간단면적법과 표면유속을 지표로하는 지표유속법을 적용하였으며, 유량산정 결과는 기존 관측소의 수위-유량관계의 환산유량과 ADCP를 이용한 실측유량을 비교하였다. 다회선 표면유속 측정시스템을 이용하여 유량을 산정한 결과, 중간단면적법 및 지표유속법 모두 실측치와의 상대오차가 5% 이내로 비교적 정확한 유량측정이 가능한 것으로 확인되었다. 따라서, 향후 홍수기 유량측정이 어렵거나 위험한 지점을 대상으로 홍수가 주로 발생하는 기간에 일시적으로 설치하여 활용이 가능할 것으로 판단된다.

  • PDF

Standard technical analysis, trend and future of NFC (NFC의 표준기술 분석, 동향 및 전망)

  • Noh, Sun-Kuk;Choi, Dong-You
    • Smart Media Journal
    • /
    • v.2 no.3
    • /
    • pp.10-16
    • /
    • 2013
  • NFC (Near Field Communication) was developed by SONY, NXP in 2002 and in 2003 respectively. It is one type of standard shore-range wireless communication system which operates in 13.56 MHz frequency band, within 10 cm distance and enables data transfer between devices with maximum rate of 424kbps. Various studies have been done on NFC technology and many handset manufacturers such as Apple, Google, Samsung Electronics Co., are trying to expand their market for new mobile services using this technology. This paper analyses the NFC standard technology, its trends and prospects in chapter II, which is followed by NFC systems and communication method in chapter III, and eventually NFC trends and future views is explained in chapter IV.

  • PDF

A Study on the Development and Characteristics Evaluation of Non-Contact HFCT Sensor for Partial Discharge Measurement (부분방전 측정용 비접촉식 HFCT 센서개발 및 특성평가에 관한 연구)

  • Sang-Bo Han
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.131-135
    • /
    • 2024
  • In this study, the sensor such as current transformer type was developed for measuring non-contact partial discharge in power electrical facilities, and the results of the characteristic evaluation were discussed. The frequency response characteristics of the HFCT sensor were shown to be measurable from 20 [kHz] to 20 [MHz]. The average sensitivity for the positive direction was 0.308 [mV/pC], and the negative direction was 0.459 [mV/pC]. Which showed that the sensitivity for the negative direction was better than that for the positive direction. The developed HFCT sensor is possible to measure very small partial discharge pulse signals and can be measured various types of partial discharge that may occur at power electrical facilities.

Copper Ohmic Contact on n-type SiC Semiconductor (탄화규소 반도체의 구리 오옴성 접촉)

  • 조남인;정경화
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.29-33
    • /
    • 2003
  • Material and electrical properties of copper-based ohmic contacts on n-type 4H-SiC were investigated for the effects of the post-annealing and the metal covering conditions. The ohmic contacts were prepared by sequential sputtering of Cu and Si layers on SiC substrate. The post-annealing treatment was performed using RTP (rapid thermal process) in vacuum and reduction ambient. The specific contact resistivity ($p_{c}$), sheet resistance ($R_{s}$), contact resistance ($R_{c}$), transfer length ($L_{T}$), were calculated from resistance (RT) versus contact spacing (d) measurements obtained from TLM (transmission line method) structure. The best result of the specific contact resistivity was obtained for the sample annealed in the reduction ambient as $p_{c}= 1.0 \times 10^{-6}\Omega \textrm{cm}^2$. The material properties of the copper contacts were also examined by using XRD. The results showed that copper silicide was formed on SiC as a result of intermixing Cu and Si layer.

  • PDF

A Study on the Real-Time Oil-Spill Monitoring Technology (실시간 기름유출 모니터링 기술에 관한 연구)

  • Yeom, Woo-jung;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.472-477
    • /
    • 2017
  • Oil spills cause a lot of damage to the environment. Oil destroys the water environment and ecosystem in a very short period of time once they are contaminated by it, it takes a lot of time to recover from the contamination and the cleaning process is very difficult. Therefore, oil detectors are greatly needed as they can monitor any oil spills over the sea, rivers, and lakes. There are two kinds of technology available for detecting oil, viz. the contact and non-contact types. The former is based on the use of the conductivity, capacitance and microwaves, while the latter employs infrared, UV, laser, optic and radar technologies. As there are also various hurdles in the measuring of oil on water, such as the presence of waves, refraction of light, temperature and saltiness, it is imperative to select the right oil detector which is appropriate for the specific environment. In this study, a contact type oil detector is developed, which can be used in oil related industries, such as refineries, petrochemical companies, and power generation stations. The detector is made up of the sensor module, which floats on the water, and the controller which processes the signal coming from the sensor module and displays it. It is designed in such a way that the existence of oil is detected through the sensor and the change in the permittivity is observed to determine the volume and type of spilled oil.