• Title/Summary/Keyword: 비전 기반 결함 자동 검사

Search Result 7, Processing Time 0.021 seconds

Detection of Object Images for Automatic Inspection based on Machine Vision (머쉰비전기반 자동검사를 위한 대상 이미지 검출)

  • Hong, Seung-woo;Hong, Seung-beom;Lee, Kyou-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.211-213
    • /
    • 2019
  • This paper proposes an image detection method, which can detect images regardless of the location and the direction of an image, required for automatic inspection based on machine vision technologies. A cable harness is considered in this paper as an inspection object, and implementation results of a technology of being applicable to a real cable harness production process is presented.

  • PDF

Recognition Direction Improvement of Target Object for Machine Vision based Automatic Inspection (머신비전 자동검사를 위한 대상객체의 인식방향성 개선)

  • Hong, Seung-Beom;Hong, Seung-Woo;Lee, Kyou-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1384-1390
    • /
    • 2019
  • This paper proposes a technological solution for improving the recognition direction of target objects for automatic vision inspection by machine vision. This paper proposes a technological solution for improving the recognition direction of target objects for automatic vision inspection by machine vision. This enables the automatic machine vision inspection to detect the image of the inspection object regardless of the position and orientation of the object, eliminating the need for a separate inspection jig and improving the automation level of the inspection process. This study develops the technology and method that can be applied to the wire harness manufacturing process as the inspection object and present the result of real system. The results of the system implementation was evaluated by the accredited institution. This includes successful measurement in the accuracy, detection recognition, reproducibility and positioning success rate, and achievement the goal in ten kinds of color discrimination ability, inspection time within one second and four automatic mode setting, etc.

Automatic detection system for surface defects of home appliances based on machine vision (머신비전 기반의 가전제품 표면결함 자동검출 시스템)

  • Lee, HyunJun;Jeong, HeeJa;Lee, JangGoon;Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.47-55
    • /
    • 2022
  • Quality control in the smart factory manufacturing process is an important factor. Currently, quality inspection of home appliance manufacturing parts produced by the mold process is mostly performed with the naked eye of the operator, resulting in a high error rate of inspection. In order to improve the quality competition, an automatic defect detection system was designed and implemented. The proposed system acquires an image by photographing an object with a high-performance scan camera at a specific location, and reads defective products due to scratches, dents, and foreign substances according to the vision inspection algorithm. In this study, the depth-based branch decision algorithm (DBD) was developed to increase the recognition rate of defects due to scratches, and the accuracy was improved.

Computer Vision-Based Process Inspection for the Development of Automated Assembly Technology Ethernet Connectors (이더넷 커넥터 자동 조립 기술 개발을 위한 컴퓨터 비전 기반 공정 검사)

  • Yunjung Hong;Geon Lee;Jiyoung Woo;Yunyoung Nam
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.89-90
    • /
    • 2024
  • 본 연구는 와이어 하네스의 불량 여부를 정확하고 빠르게 감지하기 위해 컴퓨터 비전을 활용하여 압착된 단자의 길이, 단자 끝단 치수(너비), 압착된 부분의 폭(와이어부, 심선부)의 6가지 측정값을 계산하는 것을 목표로 한다. 단자 영역별 특징과 배경과 객체 간 음영 차이를 이용하여 기준점을 생성함으로써 값들을 추출하였다. 최종적으로 각 측정 유형별로 99.1%, 98.7%, 92.6%, 92.5%, 99.9%, 99.7% 정확도를 달성하였으며, 모든 측정값에서 평균 97%의 정확도로 우수한 결과를 얻었다.

  • PDF

Segmentation of Defective Regions based on Logical Discernment and Multiple Windows for Inspection of TFT-LCD Panels (TFT-LCD 패널 검사를 위한 지역적 분별에 기반한 결함 영역 분할 알고리즘)

  • Chung, Gun-Hee;Chung, Chang-Do;Yun, Byung-Ju;Lee, Joon-Jae;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.2
    • /
    • pp.204-214
    • /
    • 2012
  • This paper proposes an image segmentation for a vision-based automated defect inspection system on surface image of TFT-LCD(Thin Film Transistor Liquid Crystal Display) panels. TFT-LCD images have non-uniform brightness, which is hard to finding defective regions. Although there are several methods or proposed algorithms, it is difficult to divide the defect with high reliability because of non-uniform properties in the image. Kamel and Zhao disclosed a method which based on logical stage algorithm for segmentation of graphics and character. This method is a one of the local segmentation method that has a advantage. It is that characters and graphics are well segmented in an image which has non-uniform property. As TFT-LCD panel image has a same property, so this paper proposes new algorithm to segment regions of defects based on Kamel and Zhao's algorithm. Our algorithm has an advantage that there are a few ghost objects around the defects. We had experiments to prove performance in real TFT-LCD panel images, and comparing with the FFT(Fast Fourier Transform) method which is used a bandpass filter.

Edge Detection and ROI-Based Concrete Crack Detection (Edge 분석과 ROI 기법을 활용한 콘크리트 균열 분석 - Edge와 ROI를 적용한 콘크리트 균열 분석 및 검사 -)

  • Park, Heewon;Lee, Dong-Eun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.2
    • /
    • pp.36-44
    • /
    • 2024
  • This paper presents the application of Convolutional Neural Networks (CNNs) and Region of Interest (ROI) techniques for concrete crack analysis. Surfaces of concrete structures, such as beams, etc., are exposed to fatigue stress and cyclic loads, typically resulting in the initiation of cracks at a microscopic level on the structure's surface. Early detection enables preventative measures to mitigate potential damage and failures. Conventional manual inspections often yield subpar results, especially for large-scale infrastructure where access is challenging and detecting cracks can be difficult. This paper presents data collection, edge segmentation and ROI techniques application, and analysis of concrete cracks using Convolutional Neural Networks. This paper aims to achieve the following objectives: Firstly, achieving improved accuracy in crack detection using image-based technology compared to traditional manual inspection methods. Secondly, developing an algorithm that utilizes enhanced Sobel edge segmentation and ROI techniques. The algorithm provides automated crack detection capabilities for non-destructive testing.

Development of Image Defect Detection Model Using Machine Learning (기계 학습을 활용한 이미지 결함 검출 모델 개발)

  • Lee, Nam-Yeong;Cho, Hyug-Hyun;Ceong, Hyi-Thaek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.513-520
    • /
    • 2020
  • Recently, the development of a vision inspection system using machine learning has become more active. This study seeks to develop a defect inspection model using machine learning. Defect detection problems for images correspond to classification problems, which are the method of supervised learning in machine learning. In this study, defect detection models are developed based on algorithms that automatically extract features and algorithms that do not extract features. One-dimensional CNN and two-dimensional CNN are used as algorithms for automatic extraction of features, and MLP and SVM are used as algorithms for non-extracting features. A defect detection model is developed based on four models and their accuracy and AUC compare based on AUC. Although image classification is common in the development of models using CNN, high accuracy and AUC is achieved when developing SVM models by converting pixels from images into RGB values in this study.