• Title/Summary/Keyword: 비음수 행렬분해

검색결과 76건 처리시간 0.026초

비음수행렬분해와 위키피디아를 이용한 사용자기반의 문서요약 (User-based Document Summarization using Non-negative Matrix Factorization and Wikipedia)

  • 박선;정민아;이성로
    • 대한전자공학회논문지SP
    • /
    • 제49권2호
    • /
    • pp.53-60
    • /
    • 2012
  • 본 논문은 위키피디아의 외부지식을 이용하여 사용자의 질의를 확장하고, 확장된 질의와 문서집합의 내부구조를 표현하는 의미특징을 이용하여 문서를 요약하는 새로운 방법을 제안한다. 제안된 방법은 사용자의 초기 질의에 위키피디아 기반의 연관 피드백을 적용하여 사용자가 요구하는 요약문장을 추출할 수 있도록 질의를 확장하며, 비음수 분해된 문서의 의미특징을 이용함으로써 문서의 내부 구조를 잘 표현 할 수 있다. 확장된 질의와 의미특징을 이용하여 의미 있는 문장을 추출함으로써 사용자의 요구사항과 제안방법의 요약결과 사이의 의미적 차이를 감소시킨다. 실험결과 제안방법이 기존방법에 비해서 문서요약에 대해 더 좋은 성능을 보인다.

Matrix Factorization을 이용한 음성 특징 파라미터 추출 및 인식 (Feature Parameter Extraction and Speech Recognition Using Matrix Factorization)

  • 이광석;허강인
    • 한국정보통신학회논문지
    • /
    • 제10권7호
    • /
    • pp.1307-1311
    • /
    • 2006
  • 본 연구에서는 행렬 분해 (Matrix Factorization)를 이용하여 음성 스펙트럼의 부분적 특정을 나타낼 수 있는 새로운 음성 파라마터를 제안한다. 제안된 파라미터는 행렬내의 모든 원소가 음수가 아니라는 조건에서 행렬분해 과정을 거치게 되고 고차원의 데이터가 효과적으로 축소되어 나타남을 알 수 있다. 차원 축소된 데이터는 입력 데이터의 부분적인 특성을 표현한다. 음성 특징 추출 과정에서 일반적으로 사용되는 멜 필터뱅크 (Mel-Filter Bank)의 출력 을 Non-Negative 행렬 분해(NMF:Non-Negative Matrix Factorization) 알고리즘의 입 력으로 사용하고, 알고리즘을 통해 차원 축소된 데이터를 음성인식기의 입력으로 사용하여 멜 주파수 캡스트럼 계수 (MFCC: Mel Frequency Cepstral Coefficient)의 인식결과와 비교해 보았다. 인식결과를 통하여 일반적으로 음성인식기의 성능평가를 위해 사용되는 MFCC에 비하여 제안된 특정 파라미터가 인식 성능이 뛰어남을 알 수 있었다.

비음수 텐서 분해 및 은닉 마코프 모델을 이용한 다음향 환경에서의 이중 채널 음향 사건 검출 (Dual-Channel Acoustic Event Detection in Multisource Environments Using Nonnegative Tensor Factorization and Hidden Markov Model)

  • 전광명;김홍국
    • 전자공학회논문지
    • /
    • 제54권1호
    • /
    • pp.121-128
    • /
    • 2017
  • 본 논문에서는 다음향(multisource) 환경에서의 음향 사건 검출 정확도를 높이기 위해 비음수 텐서 분해(nonnegative tensor factorization, NTF)와 은닉 마코프 모델(hidden Markov model, HMM)을 이용한 이중 채널 음향 사건 검출 방법을 제안한다. 제안된 방법은 먼저 이중 채널 입력 신호들에 NTF 기법을 적용하여 얻은 각 음향 사건 별 채널 이득을 활용하여 다수의 음향 사건들을 검출한다. 그러고 나서, 채널 이득에 의해 검출된 음향 사건의 발생 여부를 검증하기 위하여 채널 이득을 우도 가중치로 활용하는 HMM 기반의 우도비 검증을 수행한다. 제안된 방법의 검출 정확도를 평가하기 위하여 다양한 잡음과 사건간 중첩 밀도를 고려하는 다중 사건 발생 환경에 대한 F-measure를 측정하였고, 기존의 혼합 가우시안 모델 및 비음수 행렬 분해 기반의 음향 사건 검출 방법들과 비교하였다. 실험 결과, 제안된 방법이 기존 방법들에 비하여 모든 실험 조건에서 높은 정확도를 보였다.

군집과 위키피디아를 이용한 문서군집 (Document Clustering using Clustering and Wikipedi)

  • 박선;이성호;박희만;김원주;김동진;산드라 아벨;이성로
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.392-393
    • /
    • 2012
  • 본 논문은 군집과 위키피디아(Wikipedia)를 이용하여 문서를 군집하는 새로운 방법을 제안한다. 제안된 방법은 비음수행렬분해를 이용하여 군집을 대표할 수 있는 군집 주제(topic)의 개념을 잘 표현할 수 있으며, 위키피디아의 동음이의어를 사용함으로써 문서와 군집 간의 의미관계를 고려하지 않는 용어집합(bag-of-words) 문제를 해결할 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

  • PDF

용어 가중치에 의한 문서요약 (Document Summarization using Term Weighting)

  • 박선;김철원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.704-706
    • /
    • 2012
  • 본 논문은 용어 가중치에 의한 문서요약 방법을 제안한다. 제안된 방법은 의사연관피드백을 이용하여 사용자의 간섭을 최소화 시키며, 의미특징으로부터 유도된 용어의 가중치는 문장집합의 내부 특징을 잘 나타나기 때문에 문서요약의 질을 향상할 수 있다.

  • PDF

이중 마이크로폰을 이용한 비음수 행렬분해 기반 다중음원 도래각 예측 (Nonnegative Matrix Factorization Based Direction-of-Arrival Estimation of Multiple Sound Sources Using Dual Microphone Array)

  • 전광명;김홍국;유승우
    • 전자공학회논문지
    • /
    • 제54권2호
    • /
    • pp.123-129
    • /
    • 2017
  • 본 논문에서는 이중 마이크로폰 배열을 이용하여 비음수 행렬분해(nonnegative matrix factorization, NMF) 기반으로 다중음원의 도래각을 추정하는 새로운 방법을 제안한다. 우선 이중 마이크로폰 배열에 들어온 음향 신호들을 연속된 분석프레임으로 분할한 후, 각 프레임에 대해 조향응답파워 위상변환(steered-response power phase transform, SRP-PHAT) 빔형성기를 적용하여 스테레오 신호들을 시간-방향 영역으로 표현한다. 이러한 SRP-PHAT의 시간-방향 출력값들은 사전에 정의된 프레임 수만큼 누적하여 시간-방향 블록으로 정의한다. 다음으로, 잡음에 강건한 도래각 추정을 위하여, 각 시간-방향 블록을 블록차감 기법을 사용하여 매 프레임에 대해 정규화한다. 이후, 다중음원 환경에서 각 음원의 방향을 클러스터링하기 위해 정규화된 시간-방향 블록에 비지도(unsupervised) NMF를 적용한다. 구체적으로, 음원의 개수와 이들의 도래각을 추정하는데 각각 활성 및 기저 행렬들을 사용한다. 제안된 방법의 도래각 추정 성능을 평가하기 위해 이중 마이크로폰 배열로부터 입력된 [$-35{\circ}$, 5m], [$12{\circ}$, 4m], 그리고 [$38{\circ}$, 4.m]에 각각 위치한 세 가지 음원들에 대한 추정 오차의 절대 평균(mean absolute error, MAE) 및 오차의 표준편차를 측정하였다. 실험 결과. 제안된 방법은 기존의 SRP-PHAT 기반 도래각 추정방법에 비해 상대적으로 MAE를 56.83% 줄일 수 있었다.

주파수 특성 기저벡터 학습을 통한 특정화자 음성 복원 (Target Speaker Speech Restoration via Spectral bases Learning)

  • 박선호;유지호;최승진
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권3호
    • /
    • pp.179-186
    • /
    • 2009
  • 본 논문에서는 학습이 가능한 특정화자의 발화음성이 있는 경우, 잡음과 반향이 있는 실 환경에서의 스테레오 마이크로폰을 이용한 특정화자 음성복원 알고리즘을 제안한다. 이를 위해 반향이 있는 환경에서 음원들을 분리하는 다중경로 암묵음원분리(convolutive blind source separation, CBSS)와 이의 후처리 방법을 결합함으로써, 잡음이 섞인 다중경로 신호로부터 잡음과 반향을 제거하고 특정화자의 음성만을 복원하는 시스템을 제시한다. 즉, 비음수 행렬분해(non-negative matrix factorization, NMF) 방법을 이용하여 특정화자의 학습음성으로부터 주파수 특성을 보존하는 기저벡터들을 학습하고, 이 기저벡터들에 기반 한 두 단계의 후처리 기법들을 제안한다. 먼저 본 시스템의 중간단계인 CBSS가 다중경로 신호를 입력받아 독립음원들을(두 채널) 출력하고, 이 두 채널 중 특정화자의 음성에 보다 가까운 채널을 자동적으로 선택한다(채널선택 단계). 이후 앞서 선택된 채널의 신호에 남아있는 잡음과 다른 방해음원(interference source)을 제거하여 특정화자의 음성만을 복원, 최종적으로 잡음과 반향이 제거된 특정화자의 음성을 복원한다(복원 단계). 이 두 후처리 단계 모두 특정화자 음성으로부터 학습한 기저벡터들을 이용하여 동작하므로 특정화자의 음성이 가지는 고유의 주파수 특성 정보를 효율적으로 음성복원에 이용 할 수 있다. 이로써 본 논문은 CBSS에 음원의 사전정보를 결합하는 방법을 제시하고 기존의 CBSS의 분리 결과를 향상시키는 동시에 특정화자만의 음성을 복원하는 시스템을 제안한다. 실험을 통하여 본 제안 방법이 잡음과 반향 환경에서 특정화자의 음성을 성공적으로 복원함을 확인할 수 있다.

의미 특징 행렬과 의미 가변행렬을 이용한 질의 기반의 문서 요약 (Query-Based Summarization using Semantic Feature Matrix and Semantic Variable Matrix)

  • 박선
    • 한국항행학회논문지
    • /
    • 제12권4호
    • /
    • pp.372-377
    • /
    • 2008
  • 본 논문은 의미특징행렬(semantic feature matrix)과 의미변수행령(semantic variable matrix)을 이용하는 질의 기반의 새로운 문서를 요약방법을 제안한다. 제안된 방법은 비지도 학습 방법으로 질의와 문장 간에 사전학습이 필요 없고, 의미 특징(semantic feature)과 의미변수(semantic variable)를 이용하여 질의에 적합한 하위 주제를 잘 반영하여서 정확한 문서를 요약 할 수 있다. 이것은 비음수 행렬 분해가 주제들로 구성된 문서의 내부구조를 나타내는 의미특징을 자연스럽게 추출할 수 있기 때문이다. 실험결과 제안방법이 다른 방법에 비하여 좋은 성능을 보인다.

  • PDF

군집 주제의 유의어와 유사도를 이용한 문서군집 향상 방법 (Enhancing Document Clustering Method using Synonym of Cluster Topic and Similarity)

  • 박선;김경준;이진석;이성로
    • 대한전자공학회논문지SP
    • /
    • 제48권5호
    • /
    • pp.30-38
    • /
    • 2011
  • 본 논문은 군집 주제의 유의어와 유사도를 이용하여 문서군집의 성능을 향상시키는 방법을 제안한다. 제안된 방법은 비음수 행렬분해의 의미특징을 이용하여 군집 주제(topic)의 용어들을 선택함으로서 문서 군집 집합의 내부구조를 잘 표현할 수 있으며, 군집 주제의 용어들에 워드넷의 유의어를 사용하여서 확장함으로써 문서를 용어집합(BOW, bag-of-words)으로 표현하는 문제를 해결할 수 있다. 또한 확장된 군집 주제의 용어와 문서집합에 코사인 유사도를 이용하여서 군집의 주제에 적합한 문서를 잘 군집하여서 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

잡음 데이터를 활용한 음성 기저 행렬과 NMF 기반 음성 향상 기법 (Speech Basis Matrix Using Noise Data and NMF-Based Speech Enhancement Scheme)

  • 권기수;김형용;김남수
    • 한국통신학회논문지
    • /
    • 제40권4호
    • /
    • pp.619-627
    • /
    • 2015
  • 본 논문은 비음수 행렬 인수분해(NMF)를 이용한 음성향상 기법을 다루고 있다. 음성과 잡음에서 적절한 훈련을 통해 각각의 기저(basis) 행렬을 구하고 이 행렬들을 이용하여 두 음원을 분리 하는 것이다. 그 중에서도 음성향상의 성능은 사용하게 되는 기저 행렬에 따라 크게 달라짐을 보인다. 기존의 독립적으로 구한 음성 기저 행렬에 비해서, 잡음 데이터를 복원하는데 부적합한 방향으로 최적화시킨 음성 기저 행렬을 사용하였을 때 더 높은 음성향상 성능을 보임을 실험으로 확인하였다. 이 때 잡음 데이터의 복원 오차 자체를 크게 해주는 방향과 해당 인코딩 행렬(encoding matrix) 원소의 값을 작게 해주는 두 가지 방법을 적용하여 비교하였다. 좀 더 음성 복원에만 특화된 기저 행렬을 구함으로서 음성 기저 행렬이 잡음 데이터 복원에 사용되는 것을 최소화 하였다. 실험 결과에서는 perceptual evaluation speech quality값과 signal to distortion ratio를 지표로 사용하였고, 기존 기법에서 사용하는 기저 행렬 보다 더 높은 성능을 보임을 확인 하였다.