본 논문은 발성자의 자연스러운 음성데이터를 수집하기 위한 발성내용 제시시스팀의 구현에 대하여 기술한다. 대량의 음성정보의 수집 및 처리를 위해서는 이와같은 시스팀이 필수적이다. 왜냐하면, 음성정보처리의 성능 평가는 음성데이터와 발성방법에 따라 죄우되므로 실제의 환경에서 사용되는 자연스러운 음성으로 평가되어야만 객관적인 결과를 얻을 수 있기 때문이다. 따라서 이러한 음성데이터를 효율적으로 수집하기 위한 방법으로써 발성내용 제시시스팀에 관하여 기술하고자 한다. 특히, 본 논문에서는 발성해야 할 데이터를 제시하기 위한 방법으로써 발성내용 제시 시스팀에 관하여 기술하고자 한다. 특히, 본 논문에서는 발성해야 할 데이터를 제시하기 위한 요구사항, 기능, PC에 의한 구현에 대하여 기술한다. 본 시스팀은 음성수집 단계뿐만아니라 수집 후의 편집 작업의 편리성을 고려하여 구현하였으며, 4연속 숫자음 등 96명이 발성한 63,840개의 단어를 수집하는데 적용하였고 수집 과정에서 종래의 리스트를 보고 발성하는 방법에 비해 훨씬 효율적이고 자연스러운 발성을 유도할 수 있었다.
연구개에 결함이 있는 사람의 발음은 부적절한 비음이 섞이게 되어 과비음성 비음이 되어 연구개를 복원해주는 시술을 하게 되는데, 과비음성 비음을 정량적으로 측정할 수있다면 시술 결과를 객관화 할 수 있게 된다. 현재 임상적으로 사용되고 있는 방법들은 관혈적이거나 고가의 장비를 필요로 한다. 본 논문에서는 비음의 특징인 스펙트럼에서 zero 의 존재와 비강에 의한 포만트의 존재 사실, 그리고 선형 예측 모델을 이용하여 마이크로폰과 사운드 카드가 장착된 PC로 구현할 수 있는 새로운 과비음성 비음 추정 알고리즘을 제안하였다. 음성 신호의 스펙트럼에 zero가 존재하는 경우, 낮은 차수(order)의 선형 예측 모델이 그 음성을 발음한 성도 시스템에 정확히 적용되지 않는다는 점을 이용하여, 같은 음성에 대한 높은 차수의 선형 예측 모델과의 차이를 이용해서 과비음성의 정량화를 시도했다. 본 논문에서는 제안된 알고리즘은 기존의 Teager Operator를 이용한 알고리즘에 비해서 Nasonmeter 의 측정결과와 더 높은 통계적 상관관계를 보여주었다.
현재 나오는 많은 음성 인식기가 대체로 높은 정확도를 가지고 있더라도, 음성 인식 오류는 여전히 빈번하게 발생한다. 음성 인식 오류는 관련 어플리케이션에 있어 많은 오동작의 원인이 되므로, 음성 인식 오류는 고쳐져야 한다. 본 논문에서는 Trie 기반 사전을 이용한 Guided Sequence Generation을 제안한다. 제안하는 모델은 목표 단어와 그 단어의 문맥을 Encoding하고, 그로부터 단어를 Character 단위로 Decoding하며 단어를 Generation한다. 올바른 단어를 생성하기 위하여, Generation 시에 Trie 기반 사전을 통해 유도한다. 실험을 위해 모델은 영어 TV 가이드 도메인의 말뭉치의 음성 인식 오류를 단순히 Simulation하여 만들어진 말뭉치로부터 훈련되고, 같은 도메인의 음성 인식 문장과 결과로 이루어진 병렬 말뭉치에서 성능을 평가하였다. Guided Generation은 Unguided Generation에 비해 14.9% 정도의 오류를 줄였다.
판소리의 특질을 연구하기 위하여 여덟 명창의 소리를 분석하였다. 그 결과 모두에게서 유성음임에도 불구하고 비주기성인 소리를 찾았다. 이러한 현상은 매우 높은 성대밑 공기압에 기인한다고 보았다. 이 비주기성 유성음은 명창들의 일반 대화에서도 나타나서 이러한 현상이 곧 성대의 영구적인 변화에 의한 것임을 추정할 수 있었다. 또한 판소리에서 나타나는 vibrato는 서양의 오페라에 비해 주기가 훨씬 길고 범위는 훨씬 넓음이 확인되었다. 그 외에도 모든 명창의 경우 고주파수 영역에서 매우 높은 에너지를 보여주어서 일반인의 발성과 차이가 남을 알 수 있었고, 특히 일부 명창의 경우는 1000Hz 바로 이하에서 유별나게 강한 harmonics가 나타나서 서양 음악의 소위 singer's formant와 대조를 이루었다.
음성신호는 잡음 또는 전송 채널의 특성에 의하여 왜곡되고, 왜곡된 음성은 음성인식 및 화자인식의 성능을 크게 저하시킨다. 이러한 문제점을 극복하기 위해 본 논문에서는 Gaussian mixture model (GMM)에 적용된 신호대잡음비 (SNR)기반 신뢰도 가중 기법[1][2]을 Hidden Markov model(HMM) 디코더에 변형하여 적용하였다. HMM 디코더 변형은 HMM 상태별 관측확률을 논문 [1]에서 제시된 신뢰도로 가중함으로써 이루어졌다. 제안한 방법의 성능을 확인하기 위해 ETRI에서 만든 한국어 화자인식용 휴대폰 음성 DB를 사용하여 문맥종속 화자식별 실험을 하였다. 실험결과 기존 방법에 비해 제안한 방법의 화자인식률이 크게 향상됨을 확인 할 수 있었다.
음성 데이터를 IP기반의 패킷망을 통해 전송하는 기술인 VoIP(Voice over Internet Protocol) 기술은 음성 데이터를 기존의 PSTN(Public Switched Telephone Network)망을 통해 전송하는 방식에 비해 비용 절감 등의 장점을 가지고 있다. 그러나 VoIP가 기존의 PSTN망을 대체하기 위해서는 QoS(Quality of Service)의 보장과 보안이 제공되어야 한다는 문제점을 가지고 있다. VoIP망에서 보안을 위해서는 사용자간에 전송되는 음성 데이터에 대한 보안과 초기의 세션 연결 시 사용자를 인증하는 과정이 고려되어져야 한다. 실질적인 대화 내용인 음성 데이터의 보안도 중요한 부분이지만 대화에 참여하는 사용자를 인증하는 과정이 선행되어야 한다. VoIP에서는 세션 연결 설정을 위해 H.323과 SIP를 사용하고 있으며, 최근에는 H.323에 비해 간단한 SIP가 주목을 받고 있다. RFC3261에서는 SIP를 이용해 세션 연결을 하는 과정에서 사용자를 인증하기 위한 몇 가지 인증 메커니즘을 제시하고 있다. 본 논문에서는 SIP를 이용하여 세션을 연결하는 과정에서 사용자의 인증을 위해 사용되는 인증 메커니즘 중 한 가지인 HTTP Digest Authentication의 취약점을 분석하고, 이를 보완하기 위한 새로운 인증 메커니즘을 제시한다.
Human Computer Interaction 기술을 구체화 시키기 위한 Intelligent Responsive Space의 개발에 있어서 음성정보는 여러 가지로 유용하게 활용될 수 있다. 음성신호로부터 얻을 수 있는 다양한 정보 중의 하나가 화자인식을 이용한 화자의 신원식별이다. 이 논문에서는 화자인식 인식이 어려운 환경에서도 음성 신호로부터 추출한 특성벡터들을 선택적으로 사용함으로써 화자인식 성능을 높일 수 있는 새로운 방법을 제안하려 한다. 화자를 인식하는데 있어서 인식오류를 발생시킬 가능성이 높은 특성벡터들을 인식을 위한 판단의 대상에서 배제시킴으로써 성능을 향상시킬 수 있다. 실험결과에 의하면 0.25초에서2초 길이의 짧은 음성만으로도 기존의 방법에 비해 20에서 51%의 상대적 성능 향상을 보였다. 새롭게 제안된 방법을 적용하면 기존의 방법들에 비해 세밀하면서도 정확하게 연속적으로 화자들을 인식할 수 있게 된다.
최근 스마트 기기에서 오디오 데이터를 이용하는 응용 기술들이 증가하면서, 오디오 데이터에서 관심 있는 구간을 찾아내는 기술의 필요성이 증가하고 있다. 본 논문에서는 Perceiver 모델을 활용하여 오디오 데이터에서 사람의 음성 구간을 검출하고 축약하는 방법을 제안한다. Perceiver 모델은 복잡한 입력 데이터에 대하여 Self-attention을 기반으로 특징을 추출하면서 이전의 특징을 다음 입력으로 다시 학습하는 특징을 갖고 있어서 연속적인 데이터인 오디오에 효율적으로 적용할 수 있다. 외부 및 자체에서 수집한 음성과 비음성 데이터셋에 대하여 실험을 진행하였고, 10초 단위 세그먼트에서 대해서 92.4%의 검출 정확도를 달성하였다.
본 연구에서는 편측성 난청인을 위한 저전력 무선통신인 지그비를 이용해 청력이 나쁜 쪽 귀의 소리를 청력이 좋은 쪽 귀로 전송해주는 무선 크로스 보청기를 설계하였다. 일반적으로 크로스 보청기에서는 자기목소리가 크게 려 상대방 음성인식에 영향을 줄 수 있다. 이를 방지하고자 본 연구에서는 자기음성억제 알고리즘을 제안한다. 자기음성억제 알고리즘의 성능평가를 확인하기 위하여 어음명료도검사를 하였다. 실험데이터는 1m 거리의 상대음성인 1음절단어 세트와 자기음성을 함께 녹음한 것을 사용하였다. 그 결과, 어음명료도검사에서 자기음성억제 알고리즘 적용 시 SDT값이 약 11%가량 증가였다. 즉, 자기음성억제 알고리즘이 동시 대화 시 상대방 음성인식 향상에 도움이 된다는 결과를 얻었다.
본 고에서는, 음성을 디지털로 부호화하여 전송함으로써 발생되는 신호 대 양자화왜곡 비(Q)의 개념 및 CODEC과의 관계를 분석하고, MNRU를 디지털 회로로 구현하는데 필요한 입력음성 신호레벨, 잡음의 통계적 성질 및 진폭제한이 음성품질에 미치는 영향을 살펴보았다. 또한, 본 연구에서 구현한 MNRU의 성능에 대해 주관평가 실험을 실시하여, 다른 나라의 주관평가 결과와 비교/분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.