• Title/Summary/Keyword: 비육돈사

Search Result 41, Processing Time 0.041 seconds

Measurement of Ammonia Emission Rate and Environmental Parameters from Growing-Finishing and Farrowing House during Hot Season (하절기 육성$\cdot$비육돈사와 분만돈사의 암모니아 발생특성 및 환경변화)

  • Lee S. H;Cho H. K.;Choi K. J.;Oh K. Y.;Yu B. K.;Lee I. B.;Kim K. W.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This study was carried out to measure the environmental related parameters from two types of swine houses. Indoor temperature, relative humidity, carbon dioxide level, ammonia concentration and emission were measures every 2 minutes from each house with portable monitoring units. Carbon dioxide concentration balance was used to estimate the ventilation rates of the different houses. Daily ammonia concentrations in the growing-finishing and farrowing houses ranged from 2 to 17 ppm and 6 to 15 ppm respectively. The daily ammonia emission rate from the manure averaged 4.37 g/h$\cdot$500 kg from growing-finishing house and 4.82 g/h$\cdot$500 kg from the farrowing house. The above findings proved that summer season was associated with higher ammonia emission rates due to higher ventilation rate and ambient air temperature.

  • PDF

Effects of Ventilation Systems on Interior Environment of the Growing-finishing Pig House in Korea (육성$\cdot$비육돈사 내에서 환기형태별 환경조사 연구)

  • Song J. I.;Yoo Y. H.;Jeong J. W.;Kim T. I.;Choi H. C.;Kang H. S.;Yang C. B.;Lee Y. Y.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.93-100
    • /
    • 2004
  • An experiment was conducted to establish comparison of ventilation efficiency in an enclosed and conventional growing-finishing pig house. The experimental pigs were in winter and summer. The main results of the experiment are as follows : Then the air from planar slot inlet the pig house flow out through the sidewall outlet operated by exhaust fan(Gl). The second structure has an air input through the circular duct inlet are plated side the juncture of the entering wall and the air into the pig house flow out through the chimney and pit outlet are operated by exhaust fan(G2). Through the air into relay fan the pig house flow out through the curtains in sidewall(G3). Similarly, air comes in through the circular duct inlet are placed the air into the pig house flow out through the curtains in sidewall (G4). Air flow rate on the floor level which is the low part of pen and the living area of pigs in the G2 and G4 system during winter was measured at 0.2 to 0.3 m/s at the 0.5 to 0.6 m/s at the maximum ventilation efficiency. As for the results of detrimental gas(ammonia) concentration ratio analysis, while G2 and G4 system sustained of summer 13.3 $\~$ 16.6 ppm, winter 14.0 $\~$ 14.6 ppm level, Gl and G3 system sustained of summer 14.6 $\~$ 20.3 ppm, winter 20.3 $\~$ 25.0 ppm, and the latter one is lower than that of the G1 and G3 system.

  • PDF

Comparison of Ventilation Efficiency in an Enclosed and Conventional Growing-Finishing Pig House (개방형과 무창형 육성비육돈사의 환기효율 비교)

  • Song, J.I.;Choi, D.Y.;Jung, J.W.;Yang, C.B.;Choi, H.L.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.459-468
    • /
    • 2004
  • An experiment was conducted to establish comparison of ventulation efficiency in an enclosed and conventional growing-finishing pig house. The main results of the experiment are as follows : In the established temperature was sustained at the level of summer 24.8${\sim}$29.1$^{\circ}C$, winter 17.9${\sim}$23.1$^{\circ}C$ during the experimental period of enclosed growing-finishing pig house, and conventional growing-finishing pig house was at the lovel of summer 24.7${\sim}$32.3$^{\circ}C$, winter 14.5${\sim}$18.2$^{\circ}C$ during the experimental period respectively. As for the results of dertimental gas(ammonia) concentration ratio analysis, while the conventional pig house sustained of summer 9.3${\sim}$16.9 mg/$\ell$ level, enclosed growing-finishing pig house sustained of summer 7.9${\sim}$16.1 mg/$\ell$, and the latter one is lower than that of the conventional growing-finishing pig house. Air flow rate on the floor level which is the low part of pen and the active area of pigs in the enclosed growing and finishing pig house during winter was measured at 0 to 0.87 m/s at the 0.01 to 2.73 m/s at the maximum ventilation efficiency. As for breeding pigs in summer, the pigs from the conventional pig house weighed 100.2kg, on the other hand, the pigs from enclosed growing-finishing pig house weighed 107.3 kg ; the differnce between the two kinds was about 7 kg. This was because the most adequate environment, which was not influenced by the exterior atmosphere, was offered to the pigs from enclosed growing-finishing pig house, and all of this could reduce pigs stress effectively.

Survey and model development of the mechanization for swine farming (양돈농가의 기계화 실태분석 및 모델개발)

  • 이성현;박원규;강창호;오권영
    • Journal of Bio-Environment Control
    • /
    • v.7 no.2
    • /
    • pp.91-108
    • /
    • 1998
  • This study was carried out to survey basic information of swine farms on the machine holdings. facility type. management of manure by farm scale and operation, and then to develop the mechanization model. Manual feeding was common for sows and nursing sows. but automation feeding was normally furnished for weaners. growing pigs and castrated male pigs. Water supplies was completely automated for all of the surveyed swine farms. Fully mechanized and automated system would not be feasible and affordable for the small scale farms breeding less than 500 heads. Because the environmental control for the nursing sows and weaner was important, some swine houses were constructed with the windowless type. However, the furnished rates ranged from 22.2% to 44.4% of the surveyed nursing sow and weaner houses at the farm scales. In the future, a computerized ventilation system would be commended for the efficient use of heat energy and to maintain the desirable temperature of swine buildings. Over-investment for large scale farm and over-crowded pigpen of small farm would cause wasting construction expenses and spreading epidermic diseases Hence, the size of swine building should follow the recommended scale. The fermentation drier was recommended for the manure management. Urine could be recycled or discharged after treating by the activated sludge process.

  • PDF

Ammonia Emission Characteristics of the Naturally Ventilated Growing-finishing Pig Building in Winter (자연환기식 육성${\cdot}$비육돈사와 동절기 암모니아 발생특성)

  • Lee, S. H.;Cho, H. K.;Kim, K. W.;Lee, I. B.;Choi, K. J.;Oh, K. Y.;Yu, B. K.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • The study was carried out to develop the real time measuring technique of ammonia and carbon dioxide concentration emitted from growing-finishing pig house in winter and estimate ammonia emission rate emitted from the pig house. As the study was carried out, environmental management technique for the pig house and odor abatement skill could be properly developed to reduce the residence's annoyance. The room temperature of the growing-finishing pig house was $10^{\circ}C$ higher than outdoor air temperature in spite of additional heating, because of heat emitted from body temperature of the pigs. The daily variation pattern of room temperature in the pig house shows the similar tendency with outdoor air temperature. The daily mean ventilation rate per head was $16\;m^3/h$ and ranged from $12\;m^3/h$ to $22.4\;m^3/h$. The difference of day and night for ventilation rate was about 2 times. The ammonia emission rate was $208{\pm}28\;mg/h{\cdot}pig$ per daily basics calculated with ventilation rate and ammonia concentration.

  • PDF

Analysis of Changing Pattern of Noxious Gas Levels with Malodorous Substance Concentrations in Individual Stage of Pig Pens for 24 hrs to Improve Piggery Environment (돈사환경 개선을 위한 생육단계별 돈사내 악취물질 농도 및 유해가스의 1일 변화추세 분석)

  • You, Won-Gyun;Kim, Cho-Long;Lee, Myung-Gyu;Kim, Dong-Kyun
    • Journal of Animal Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • Noxious gases with malodorous substance concentrations in each stages of pig buildings were determined at a typical 400sow-scale farm to improve piggery environment. Using IAQ-300 and pDR-1000AN, continuous records for the concentration of $NH_3$, CO, $CO_2$, $NO_2$, $SO_2$, $H_2S$, $O_2$, and along with temperature, humidity, dust concentrates from individual pig pens were collected to analyze every 6 hours' condition of indoor environment for 24 hours' period. In most pig houses, the air quality at noon was good, while at night (00:00~06:00), air composition became noxious in all buildings. The order of buildings' air quality for 24 hrs was pregnant > farrowing > nursery > growing > finishing. The cause of air quality differences was presumed to be the differences of stocking density, defecating amount and the length of exposure time of slurry in indoors. In conclusion, well-designed building structure, proper control of stocking density, quick removal of excreta from pig pens and continuous ventilation are prerequisites to improve pig housing environment.

Odor Removal Efficiency of Biofilter Ducting Systems in Indoor Pig House (바이오 필터를 이용한 비육돈사 배기덕트 시설의 악취저감 효과)

  • Song, J.I.;Choi, H.L.;Choi, H.C.;Kwon, D.J.;Yoo, Y.H.;Jeon, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.195-200
    • /
    • 2007
  • Management of odors is essential to swine industry in the Republic of Korea. This study was conducted to evaluate the odor removal efficiency of biofilter ducting systems. Rice straw and auto clave concrete(ALC) were used as filter medium. The ventilation fans(5 units, diameter: 500 mm) at the side wall of a growing pig housing were connected to a biofilter using a duct. The size of a biofilter is $2.5{\times}2{\times}1.2(W{\times}L{\times}H)$. The air velocities at the 300 mm above rice straw and ALC were 0.77 and 0.56 m/s, respectively. Ammonia concentration at the outlet of rice straw and ALC media were 2 and 3 ppm, respectively. Dust concentrations were also measured. The dust concentrations of rice straw and ALC were 93, $32\;mg/m^3$, respectively. There was no significant difference between filter mediums in terms of carbon dioxide concentrations(rice straw: 320, ALC: 270 mg/l). The concentration of hydrogen sulfide was stable over the experimentation. The actual concentrations of hydrogen sulfide were 4, 3 and 3 ppm at the days of 7, 21 and 36, respectively. These results suggest that biofilter ducting systems may remove odors from pig house effectively.

  • PDF

Evaluation of Ventilation Systems in an Enclosed Growing Pig House (무창육성돈사의 환기시스템에 따른 환기효율 평가)

  • Song, J.I.;Choi, H.L.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.135-144
    • /
    • 2002
  • An experiment was conducted to evaluate a ventilation system, which was devised to encourage farmers to use the enclosed growing and finishing pig housing system. A roof-air-entry ventilation system in winter and a side-wall-air-entry system in summer were evaluated. Air flow rate on the floor level which is the low part of pen and the living area of pigs in the enclosed growing and finishing pig house during winter was measured at 0 to 0.19 m/s at the minimum ventilation efficiency of 1,440 $m^{3}/h$. During summer the air flow rate was detected at 0.07 to 0.42 m/s at the maximum ventilation efficiency of 24,000 $m^{3}/h$. Therefore, it is concluded that the side-wall ventilation system is suitable for growing and finishing pigs in the enclosed house during the days of mid-summer and the roof-ventilation system was suitable during the coldest days of mid-winter. In addition, although the enclosed pig house has the system in which air exhausts through only one side wall, air should enter through both-side walls for the better ventilation performance.

Effect of Season on Volatile Organic Compounds and Volatile Fatty Acids Concentration in finishing Pig Slurry to Grassland (초지환원용 비육돈 슬러리의 계절에 따른 휘발성유기물과 휘발성지방산 농도 분석연구)

  • Cho, Sung Back;Yang, Seung Hak;Lee, Kyung Tai;Park, Sung Kwon;Han, Duck Woo;Choi, Dong Yun;Hwang, Ok Hwa
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.2
    • /
    • pp.125-128
    • /
    • 2014
  • The objective of this study is to investigate the changes in levels of odorous compounds in pig slurry during different seasons. Slurry from pens of finishing pigs was sampled every 4-wk and concentration of odorous compounds was analyzed. There was no difference in the range of phenols level (123 to 156 ppm) during spring (April to May), summer (July to August) and fall (October to November). The concentration of indoles was higher (P<0.05) during spring (14.3 ppm) than summer and fall (5.4~7.6 ppm). Level of BCFA ranging from 727 to 1,194 ppm was not different at any season. Among SCFA, there was no difference in propionic acid during any season but levels of acetic acid and butyric acid were highest (P<0.05) during spring season. Concentration of odorous compounds in pig slurry was highest during spring season. Interestingly, it tended to be lower during summer season compare to fall. This result might be due to relatively lower ventilation rate in order to maintain a constant temperature during spring season. Further study will be necessary to determine the relationship between the concentration of odorous compounds and ventilation system.