• Title/Summary/Keyword: 비원형 단면

Search Result 141, Processing Time 0.022 seconds

Influence of Specimen Geometries on the Compressive Strength of Lightweight Aggregate Concrete (경량골재 콘크리트의 압축강도에 대한 시험체 기하학적 특성의 영향)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.333-340
    • /
    • 2012
  • The current study prepared 9 laboratorial concrete mixes and 3 ready-mixed concrete batches to examine the size and shape effects in compression failure of lightweight aggregate concrete (LWC). The concrete mixes were classified into three groups: normal-weight, all-lightweight and sand-lightweight concrete groups. For each concrete mix, the aspect ratio of circular or square specimens was 1.0 and 2.0. The lateral dimension of specimens varied between 50 and 150 mm for each laboratorial concrete mix, whereas it ranged from 50 to 400 mm with an incremental variation of 50 mm for each ready-mixed concrete batch. Test observations revealed that the crack propagation and width of the localized failure zone developed in lightweight concrete specimens were considerably different than those of normal-weight concrete (NWC). In LWC specimens, the cracks mainly passed through the coarse aggregate particles and the crack distribution performance was very poor. As a result, a stronger size effect was developed in LWC than in NWC. Especially, this trend was more notable in specimens with aspect ratio of 2.0 than in specimens with that of 1.0. The prediction model derived by Kim et al. overestimated the size effect of LWC when lateral dimension of specimen is above 150 mm. On the other hand, the modification factors specified in ASTM and CEB-FIP provisions, which are used to compensate for the shape effect of specimen on compressive strength, were still conservative in LWC.

Consumer Intention to Purchase Domestic/Foreign Brand Jeans;Beliefs, Attitude, and Individual Characteristics. (국내 및 외국 상표 청바지의 구매의도에 따른 평가기준에 대한 신념과 추구이미지 및 의복태도의 차이연구)

  • 고애란
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.2
    • /
    • pp.263-272
    • /
    • 1994
  • The purpose of this study was to identify factors that might distinguish those who have a high level of Intention to purchase each of domestic, foreign designer and national brand jeans from those who have a low intention in terms of evaluative criteria belief, ideal jeans image and clothing altitude. The sample consisted of 198 male and 197 female students from five universities in Seoul. The questionnnaire consisted of 50 seven-point semantic differential scales dealing with evaluative criteria and ideal jeans image, beliefs about and intention to purchase domestic, foreign designer and foreign national brand jeans and 25 Likert type clothing attitude scales. Based on a series of t-tests the results showed that color and design were the most influencing factor among the evaluative criteria belief, regardless of brand type, while durability, accessory, sewing were the least. Sexy image, brand consciousnees and fashion interest were the important factor that distinguish high intention to purchase group fro)m low intention to purchase group.

  • PDF

A Study on Properties of Mechanical Behaviors of Concrete Confined by Circular Steel Tube (원형강관으로 구속된 콘크리트의 역학적 거동 특성에 관한 연구)

  • 박정민;김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.199-210
    • /
    • 1995
  • We could say that the concrete filled steel tube structure is superior in the vlew of various structure properties as to promote improvement of structural capacity to dtmonstrate heterogeneous material properties interdependently. The compressive strength is increased by putting to tri axial stress because lateral expansion of concrete 1s confined by the steel tube, when concrete conflned by steel tube fall under centric axial load. Also, it have an advantage that decreasr of load carrying capacity 1s small, not occuring section deficiency due to protect falling piienornonon by co~nprrssion fallurc of concrete. So this study investigated for structural behaviors yroprrtiex of concwir. confined by steel tube throughout a series of experlmerit with kcy parxncter, such as diameter-to-thickness(D / t) ratio, strength of concrete as a study on properties of structural behaviors of confined concrete confined by circular steel tube( tri axial stress). Frorn the expcrment results, the obtained results, are surnrnarised as foliow. (1) The restraint effect of concrete by steel tube was presented significantly as the D /t ratio of steel tube and the strength of filled concrete decrease, and the confined concrete by circular steel tube was increased respectively twice as much as 4-7 in deformation capacity at the ultimate strength ,compared with those of non-confined concrete, so expected to increase flexible effect of concrete. (2) The emprical formula to predict the ultimate capacity of confined concrete by steel tube and concrete filled steel tube column using restraint coefficient of concrete were proposed.

Ductility Evaluation of Circular Hollow Reinforced Concrete Columns with Internal Steel Tube (강관 보강 중공 R.C 기둥의 연성 평가 해석)

  • Han, Seung Ryong;Lim, Nam Hyoung;Kang, Young Jong;Lee, Gyu Sei
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In locations where the cost of concrete is relatively high or in situations where the weight of concrete members has to be kept to a minimum, it may be more economical to use hollow reinforced concrete vertic al members. Hollow reinforced concrete colun-ms with a low axial load, a moderate longitudinal steel percentage and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. Hollow reinforced concrete columns with a high axial load, a high longitudinal steel percentage, and a thin wall were found, however, to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner through the disintegration of the concrete in the compression zone. A design recommendation and example through the moment-curvature analysis program for curvature ductility are herein presented. A theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted, providing that the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed foi members with circular sections.

An Analysis of Simplified Cable Stayed Bridge with FRP Components (FRP 부재를 이용한 단순 사장교 모델의 거동 해석)

  • Park, Jae-Gyun;An, Il-Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.543-550
    • /
    • 2007
  • As an emerging materials in construction fields, FRP(fiber reinforced polymer) has been used in many area of civil engineering for its light weight and high strength. In this study we chose the 2nd Jindo-Bridge as a prototype, and evaluate effect of replacing steel components to FRP components through simplified 3D linear analysis. Static and modal analysis are done and the analysis results are compared with steel case analysis. From the static analysis results, the maximum stress of each component and maximum displacement of middle span are compared. Due to the reduction of deadload, the FRP structure causes less deflection than the original steel structure and from the reduced section (cable) analysis we confirmed the previous result. The occurrence wind velocity of flutter is compared by the frequency ratio.

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

Three-Dimensional Vibration Analysis of Deep, Nonlinearly Tapered Rods and Beams with Circular Cross-Section (원형단면의 깊은 비선형 테이퍼 봉과 보의 3차원 진동해석)

  • 심현주;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.251-260
    • /
    • 2003
  • A three dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of deep, tapered rods and beams with circular cross section. Unlike conventional rod and beam theories, which are mathematically one-dimensional (1-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components u/sup r/, u/sub θ/ and u/sub z/, in the radial, circumferential, and axial directions, respectively, are taken to be sinusoidal in time, periodic in , and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the rods and beams are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the rods and beams. Novel numerical results are tabulated for nine different tapered rods and beams with linear, quadratic, and cubic variations of radial thickness in the axial direction using the 3D theory. Comparisons are also made with results for linearly tapered beams from 1-D classical Euler-Bernoulli beam theory.

Numerical Study on Turbulent Flow in a Conical Diffuser (원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구)

  • 강신형;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1971-1978
    • /
    • 1992
  • A turbulent flow in a conical diffuser with total divergence angle of 8.deg. was numerically studied. The low Reynolds number k-.epsilon. model(Launder-Sharma model) was adopted to simulate the turbulence. The continuity and time averaged Navier-Stokes equations in a nonorthogonal coordinate system were solved by a finite volume method based on the fully elliptic formulation. The low Reynolds number k-.epsilon. model reasonably simulates the pressure recovery and the mean velocity components. However, there are also considerable discrepancies between predicted and measured shear stress distribution on the wall and turbulent kinetic energy distributions. It is necessary to investigate the flow structure at the entry of the diffuser, numerically as well as experimentally.

Numerical Simulation of Developing Turbulent Flow in a Circular Pipe of 180° Bend (원형 단면을 갖는 180° 굽은 곡관내 발달하는 난류유동에 관한 수치해석)

  • Myong Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.966-972
    • /
    • 2006
  • A numerical simulation is performed fur developing turbulent flow in a strongly curved 180 deg pipe and its downstream tangent by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. The governing equations are discretized as the full elliptic from of the equations of motion. Three typical two-equation turbulence models of low-Reynolds-number form are used to approximate the turbulent stress field. Solutions fur both streamwise and circumferential velocity components are compared with the experimental data by Azzola et at.(1986). The ${\kappa}-{\omega}$ model by Wilcox(1988) is found to give better prediction performance than the other two. Predicted secondary velocities and streamwise velocity component contours at sequential longitudinal stations are also presented in order to enable a detailed description of the complete flow. It is also found that, in the bend both mean streamwise and secondary velocities never achieve a fully-developed state and the code is capable of producing very well the complex nature of steady flow in a strongly curved pipe.

Design and Experiment of a Miniaturized Waveguide Band-Pass Filter Using L-Type Inverter and Small Resonant Aperture (L형 아이리스와 투과 공진 개구를 이용한 소형화된 도파관 여파기 설계 및 실험)

  • Choi, Jin-Young;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.457-467
    • /
    • 2012
  • In this paper, a miniaturized band-pass filter structure, which comprises the irises of small resonant aperture and L-type irises inverter, is proposed. Ridged circular aperture iris is chosen as an elementary resonator. L-type iris which is placed between two adjacent elementary resonators is newly proposed as impedance inverter in order to reduce longitudinal length of the proposed filter. The fabricated minimized filter has 400 MHz bandwidth at the 10 GHz center frequency and the whole size is reduced to 70 % in length compared to conventional filter.