• Title/Summary/Keyword: 비용상승

Search Result 664, Processing Time 0.03 seconds

Urban Street Planting Scenarios Simulation for Micro-scale Urban Heat Island Effect Mitigation in Seoul (미시적 열섬현상 저감을 위한 도시 가로수 식재 시나리오별 분석 - 서울시를 대상으로 -)

  • Kwon, You Jin;Lee, Dong Kun;Ahn, Saekyul
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • Global warming becomes a serious issue that poses subsidiary issues like a sea level rise or a capricious climate over the world. Because of severe heat-wave of the summer in Korea in 2016, a big attention has been focused on urban heat island since then. Not just about heat-wave itself, many researches have been concentrated on how to adapt in this trendy warming climate and weather in a small scope. A big part of existing studies is mitigating "Urban Heat Island effect" and that is because of huge impervious surface in urban area where highly populated areas do diverse activities. It is a serious problem that this thermal context has a high possibility causing mortality by heat vulnerability. However, there have been many articles of a green infrastructures' cooling impact in summer. This research pays attention to measure cooling effect of a street planting considering urban canyon and type of green infrastructures in neighborhood scale. This quantitative approach was proceeded by ENVI-met simulation with a spatial scope of a commercial block in Seoul, Korea. We found the dense double-row planting is more sensitive to change in temperature than that of the single-row. Among the double-row planting scenarios, shrubs which have narrow space between the plant and the land surface were found to store heat inside during the daytime and prevent emitting heat so as to have a higher temperature at night. The quantifying an amount of vegetated spaces' cooling effect research is expected to contribute to a study of the cost and benefit for the planting scenarios' assessment in the future.

Digital Position Acquisition Method of PET Detector Module using Maximum Likelihood Position Estimation (최대우도함수를 이용한 양전자방출단층촬영기기의 검출기 모듈의 디지털 위치 획득 방법)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • In order to acquire an image in a positron emission tomography, it is necessary to draw the position coordinates of the scintillation pixels of the detector module measured at the same time. To this end, in a detector module using a plurality of scintillation pixels and a small number of photosensors, it is necessary to obtain a flood image and divide a region of each scintillation pixel to obtain a position of a scintillation pixel interacting with a gamma ray. Alternatively, when the number of scintillation pixels and the number of photosensors to be used are the same, the position coordinates for the position of the scintillation pixels can be directly acquired as digital signal coordinates. A method of using a plurality of scintillation pixels and a small number of photosensors requires a process of obtaining digital signal coordinates requires a plurality of photosensors and a signal processing system. This complicates the signal processing process and raises the cost. To solve this problem, in this study, we developed a method of obtaining digital signal coordinates without performing the process of separating the planar image and region using a plurality of flash pixels and a small number of optical sensors. This is a method of obtaining the position coordinate values of the flash pixels interacting with the gamma ray as a digital signal through a look-up table created through the signals acquired from each flash pixel using the maximum likelihood function. Simulation was performed using DETECT2000, and verification was performed on the proposed method. As a result, accurate digital signal coordinates could be obtained from all the flash pixels, and if this is applied to the existing system, it is considered that faster image acquisition is possible by simplifying the signal processing process.

The Future of Countermobility Capability with a Literature Analysis from FASCAM to Terrain Shaping Obstacle(TSO) (미래 대기동 작전 능력의 발전방안 연구 -살포식지뢰(FASCAM)로부터 지형 조성 장애물(TSO) 전력을 중심으로-)

  • Park, Byoung-Ho;Sim, Jaeseong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.291-298
    • /
    • 2021
  • In this study, the future of countermobility capability is presented by analyzing the status of the countermobility obstacles focusing on the history of landmines and munitions. The conventional landmine was forbidden globally by the CCW and Ottawa Treaty because it caused civilian damage after the war. Because the inhumanity of those mines had been acknowledged, shatterable mines with a self-destruct (SD) function and M93 "HORNET" anti-tank munition with enhanced sensors have been fielded. In 2016, the Obama administration announced a policy that banned all antipersonnel landmines, leaving a considerable gap in the countermobility capability. To deal with these problems, the developments of "SAVO" and the SLEP program of Volcano mines were conducted. In the sense of a long-term approach, the countermobility obstacles, including mines, were chosen as fundamental forces for Multi-Domain Operations and were improved to Terrain Shaping Obstacles (TSO). TSO has improved sensors and mobility kill capabilities and features an enhanced remote control over each munition on the battlefield through a network established with satellite communication. The combined arms countermobility might be fully capable until 2050 if the TSO program can be completed successfully.

Prediction of Battery Performance of Electric Propulsion Lightweight Airplane for Flight Profiles (비행프로파일에 대한 전기추진 경량비행기의 배터리 성능 예측)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.15-21
    • /
    • 2021
  • Electrically powered airplanes can reduce CO2 emissions from fossil fuel use and reduce airplane costs in the long run through efficient energy use. For this reason, advanced aviation countries such as the United States and the European Union are leading the development of innovative technologies to implement the full-electric airplane in the future. Currently, the research and development to convert existing two-seater engine airplanes to electric-powered airplanes are underway domestically. The airplane converted to electric propulsion is the KLA-100, which aims to carry out a 30-minute flight test with a battery pack installed using the engine mounting space and copilot space. The lithium-ion battery installed on the airplane converted to electric propulsion was designed with a specific power of 150Wh/kg, weight of 200kg, and a C-rate 3~4. This study confirmed the possibility of a 30-minute flight with a designed battery pack before conducting a flight test of a modified electrically propelled airplane. The battery performance was verified by dividing the 30-minute flight profile into start/run stage, take-off stage, climbing stage, cruise stage, descending stage, and landing/run stage. The final target of the 30-minute flight was evaluated by calculating the battery capacity required for each stage. Furthermore, the flight performance of the electrically propelled airplane was determined by calculating the flight availability time and navigation distance according to the flight speed.

Development and Application of Cellulose Nanofiber Powder as a Nucleating Agent in Polylactic Acid (나노셀룰로오스 분말 개발과 폴리젖산 내 핵제 적용 연구)

  • Sanghyeon Ju;Ajeong Lee;Youngeun Shin;Teahoon Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2023
  • Because of the global pollution caused by plastic disposal, demand for eco-friendly transformation in the packaging industry is increased. As part of that, the utilization of polylactic acid (PLA) as a food packaging material is increased. However, it is necessary to improve the crystallinity of PLA by adding nucleating agents or to improve the modulus by adding fillers because of the excessive brittleness of the PLA matrix. Thus, the cellulose nanofiber (CNF) was fabricated and dried to obtain a powder form and applied to the CNF/PLA nanocomposite. The effect of CNF on the morphological, thermal, rheological, and dynamic mechanical properties of the composite was analyzed. We can confirm the impregnated CNF particle in the PLA matrix through the field emission scanning electron microscope (FE-SEM). Differential scanning calorimetry (DSC) analysis showed that the crystallinity of not annealed CNF/PLA nanocomposite was increased approximately 2 and 4 times in the 1st and 2nd cycle, respectively, with the shift to lower temperature of cold crystallization temperature (Tcc) in the 2nd cycle. Moreover, the crystallinity of annealed CNF/PLA nanocomposite increased by 13.4%, and shifted Tcc was confirmed.

Development of Time-Cost Trade-Off Algorithm for JIT System of Prefabricated Girder Bridges (Nodular GIrder) (프리팹 교량 거더 (노듈러 거더)의 적시 시공을 위한 공기-비용 알고리즘 개발)

  • Kim, Dae-Young;Chung, Taewon;Kim, Rang-Gyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.3
    • /
    • pp.12-19
    • /
    • 2023
  • In the case of the construction industry, the relationship between process and cost should be appropriately distributed so that the finished product can be delivered at the minimum fee within the construction period. At that time, it should be considered the size of the bridge, the construction method, the environment and production capacity of the factory, and the transport distance. However, due to various reasons that occur during the construction period, problems such as construction delay, construction cost increase, and quality and reliability degradation occur. Therefore, a systematic and scientific construction technique and process management technology are needed to break away from the conventional method. The prefab(Pre-Fabrication) is a representative OSC (Off-Site Construction) method manufactured in a factory and constructed onsite. This study develops a resource and process plan optimization system for the process management of the Nodular girder, a prefab bridge girder. A simulation algorithm develops to automatically test various variables in the personnel equipment mobilization plan to derive the optimal value. And, the algorithm was applied to the Paju-Pocheon Expressway Construction (Section 3) Dohwa 4 Bridge under construction, and the results compare. Based on construction work standard product calculation, actual input manpower, equipment type, and quantity were applied to the Activity Card, and the amount of work by quantity counting, resource planning, and resource requirements was reflected. In the future, we plan to improve the accuracy of the program by applying forecasting techniques including various field data.

A study on the analysis of current status of Seonakdong River algae using hyperspectral imaging (초분광영상을 이용한 서낙동강 조류 발생현황 분석에 관한 연구)

  • Kim, Jongmin;Gwon, Yeonghwa;Park, Yelim;Kim, Dongsu;Kwon, Jae Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.301-308
    • /
    • 2022
  • Algae is an indispensable primary producer in the ecosystem by supplying energy to consumers in the aquatic ecosystem, and is largely divided into green algae, blue-green algae, and diatoms. In the case of blue-green algae, the water temperature rises, which occurs in the summer and overgrows, which is the main cause of the algae bloom. Recently, the change in the occurrence time and frequency of the algae bloom is increasing due to climate change. Existing algae survey methods are performed by collecting water and measuring through sensors, and time, cost and manpower are limited. In order to overcome the limitations of these existing monitoring methods, research has been conducted to perform remote monitoring using spectroscopic devices such as multispectral and hyperspectral using satellite image, UAV, etc. In this study, we tried to confirm the possibility of species classification of remote monitoring through laboratory-scale experiments through algal culture and river water collection. In order to acquire hyperspectral images, a hyperspectral sensor capable of analyzing at 400-1000 nm was used. In order to extract the spectral characteristics of the collected river water for classification of algae species, filtration was performed using a GF/C filter to prepare a sample and images were collected. Radiation correction and base removal of the collected images were performed, and spectral information for each sample was extracted and analyzed through the process of extracting spectral information of algae to identify and compare and analyze the spectral characteristics of algae, and remote sensing based on hyperspectral images in rivers and lakes. We tried to review the applicability of monitoring.

Research about Global Positioning of Korean Cosmetic Industry through Trade Network analysis : Focusing on the China-Korea FTA (무역네트워크 분석을 통한 한국 화장품 산업의 국제적 위상에 관한 연구 - 한중 FTA 사례를 중심으로 -)

  • Kim, Yong-Jin;Kim, Young-Jin;Lee, Duk-Hee
    • Korea Trade Review
    • /
    • v.41 no.5
    • /
    • pp.63-87
    • /
    • 2016
  • Despite its rising labor costs these days, China still serves the role as 'World's Factory' thanks to a great deal of foreign direct investment, still remaining one of the world's highest, and the global companies, which have been willingly establishing foreign subsidiaries in China. While enjoying the benefits from the Chinese market, these global companies can now take advantages of another market; the one of Korea. If a product produced by a certain global company is actually manufactured in the local factory in China and the product meets specifications of Rules of Origin, the product shall receive preferential treatment under China-Korea FTA. In the perspective of global market, therefore, it is found that China-Korea FTA may have negative effects on chemical industry in Korea, which is considered one of the representatives of China-Korea FTA. This study examines such risks by network analysis, with several cases of 'Beauty or Make-up Preparations (HS Code 3304).' Analysis shows that Korea is classified as the marginal country group but not main country group when it comes to beauty products family. So this can be a great chance to the global cosmetic companies with local factories in China in the sense that they can increase their sales towards the market of Korea based on the China-Korea FTA. Under these concerns, this study suggests two policy alternatives for the chemical industry in Korea to deal with current challenges rising from China-Korea FTA. The suggested alternatives are: to actively attract the global chemical corporations which are yet to directly enter the Chinese market; and to invest on chemical products with high potential of growth as a priority.

  • PDF

The need for mechanization in todays canal building program in korea and overseas (수로의 기계화 시공의 필요성)

  • Ha, Gordon P.wkins
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.2
    • /
    • pp.21-27
    • /
    • 1979
  • Canal construction is not the only area in which mechanization has advanced with great strides. All phases of the construction industry, including earthmoving, land clearing and levelling, road construction, and drainage and water control projects, have benefited from today's technological advancements. Lasers, an excellant example of advanced technology, have been refined for use as guidance systems for construction machinery, increasing accuracy and the speed of operation. The use of explosives by contractors is becoming more commonplace. One of the most valuable modern tools available today is the two-way radio. On today's sophisticated projects a single machine being down can frequently stop the progress of the entire project, delaying hundreds of men and machines from completing their assigned work for the day. The use of two-way radios in all the pickups and cars being used on a project facilitates communication so that emergency repairs can be effected immediately, and costly down time on any project can be reduced to a minimum. Not every construction project is suitable to mechanization. However, on the majority of projects mechanization has a great deal to offer the Korean contractor, and all contractors, in savings of time and money. Each and every project being considered by a contractor, should be closely examined for the most effective and efficient machinery application available. The International Commission on Irrigation and Drainage (ICID) has formed a committee on construction techniques being used in canal construction today. Two publications are now available describing the advances made in recent years. Standards for construction have been established for mechanized systems and this information is being distributed worldwide.

  • PDF

The Development of a Energy Monitoring System based on Data Collected from Food Factories (식품공장 수집 데이터 기반 에너지 모니터링 시스템 개발)

  • Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1001-1006
    • /
    • 2023
  • Globally, rising energy costs and increased energy demand are important issues for the food processing and manufacturing industries, which consume significant amounts of energy throughout the supply chain. Accordingly, there is a need for the development of a real-time energy monitoring and analysis system that can optimize energy use. In this study, a food factory energy monitoring system was proposed based on IoT installed in a food factory, including monitoring of each facility, energy supply and usage monitoring for the heat treatment process, and search functions. The system is based on the IoT sensor of the food processing plant and consists of PLC, database server, OPC-UA server, UI server, API server, and CIMON's HMI. The proposed system builds big data for food factories and provides facility-specific monitoring through collection functions, as well as energy supply and usage monitoring and search service functions for the heat treatment process. This data collection-based energy monitoring system will serve as a guide for the development of a small and medium-sized factory energy monitoring and management system for energy savings. In the future, this system can be used to identify and analyze energy usage to create quantitative energy saving measures that optimize process work.