• 제목/요약/키워드: 비스플라인 부피

검색결과 2건 처리시간 0.017초

하이퍼큐브 ++를 이용한 다중블록 격자생성 (A hypercube + + approach for multiblock structured grids)

  • 박상근;이건우
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.900-910
    • /
    • 1997
  • Multiblock structured grids are, to a large extent, capable of filling up topologically complex flow domains in an efficient way. The proposed approach enables to use different flow models in each different block and the easy incorporation of different grid refinement strategies for different blocks. Furthermore, it may be expected that this multiblock structured approach will naturally lead to the parallel executions of calculations per block on different vector processors. In this paper, the hypercube + + structure is proposed for topological informations on multiblock grids and the B-spline volume for geometrical informations. Three samples of the-three dimensional results are presented to demonstrate the capabilities of the present approach.

비스플라인 부피에 기초한 유동 가시화 모델 (Flow Visualization Model Based on B-spline Volume)

  • 박상근;이건우
    • 한국CDE학회논문집
    • /
    • 제2권1호
    • /
    • pp.11-18
    • /
    • 1997
  • Scientific volume visualization addresses the representation, manipulation, and rendering of volumetric data sets, providing mechanisms for looking closely into structures and understanding their complexity and dynamics. In the past several years, a tremendous amount of research and development has been directed toward algorithms and data modeling methods for a scientific data visualization. But there has been very little work on developing a mathematical volume model that feeds this visualization. Especially, in flow visualization, the volume model has long been required as a guidance to display the very large amounts of data resulting from numerical simulations. In this paper, we focus on the mathematical representation of volumetric data sets and the method of extracting meaningful information from the derived volume model. For this purpose, a B-spline volume is extended to a high dimensional trivariate model which is called as a flow visualization model in this paper. Two three-dimensional examples are presented to demonstrate the capabilities of this model.

  • PDF