• Title/Summary/Keyword: 비소성 시멘트 모르타르

Search Result 17, Processing Time 0.024 seconds

Strength Characteristics of Non-Sintered Cement Mortar Utilizing Ferro-Nickel Slag as Fine Aggregate (페로니켈슬래그를 잔골재로 사용한 비소성 시멘트 모르타르의 강도 특성)

  • Ryu, Ji-Su;Jang, Kyung-Su;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • This experimental study investigates the replacement of conventional Portland cement and sand with non-sintered cement and ferro-nickel slag to formulate eco-friendly cement mortar. The examination aimed to understand the strength properties of non-sintered cement mortar using ferro-nickel slag as fine aggregate by classifying mortar production types, fine aggregates, and curing methodologies. From flexural and compressive strength tests, it was observed that non-sintered cement mortars, incorporating ferro-nickel slag as fine aggregate, exhibited superior strength when compared to both plain mortar and steam-cured non-sintered mortar. This increased strength is attributed to the influence of the particle size, density, and absorption capabilities of the ferro-nickel slag. Furthermore, X-ray Diffraction(XRD) analyses of the mortars verified the presence of MgO, a component of ferro-nickel slag, in the form of a composite oxide. This finding substantiates the consistent strength manifestation of non-sintered cement mortars utilizing ferro-nickel slag as a fine aggregate.

Fluidity and Strength Properties of Non-Sintered Cement Mortar according to the Addition of Superplasticizer (감수제 첨가에 따른 비소성 시멘트 모르타르의 유동성 및 강도 특성)

  • Jang, Kyung-Su;Na, Hyeong-Won;Byun, Hui-Jae;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.441-450
    • /
    • 2022
  • In this study, the fluidity and strength characteristics of NSC mortar according to the type and rate of addition of superplasticizer were analyzed to secure the fluidity of NSC composed of only slag and ash. Through the flow test, it was found that the fluidity of NSC was related to the basicity according to the binder condition, and the lower the reactivity, the higher the fluidity. When polycarboxylate is added, NSC mortar is considered to be more advantageous than plain mortar in terms of securing fluidity. As a result of the strength tests of NSC mortar containing Lignin or Polycarboxylate superplasticizer, it was found that the strength tends to increase as the basicity increases. In addition, when polycarboxylate is added, it is judged that the NSC mortar can secure adequate fluidity and strength at the same time. Through this experiment, an appropriate binder condition that satisfies the flowability while securing the strength was derived.

Application of Precast Concrete Products of Non-Sintered Cement Mortar based on Industrial by-Products (산업부산물을 이용한 비소성 시멘트 모르타르의 프리캐스트콘크리트 제품 적용성 평가)

  • Na, Hyeong-Won;Moon, Kyoung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • This study aimed to develop non-sintered cement that could replace portland cement which emits large amount of carbon dioxide during firing process. For this purpose, ground granulated blast furnace slag, type c fly ash and slaked lime were used. In addition, through the experimental results, the characteristics of the non-sintered cement binders according to the mixing ratios will be identified, and the utilization plans for the precast concrete products will be presented. In this experiment, non-sintered cement binders using industrial by-products were prepared to compare the flexural strength and compressive strength of each of the 3, 7 and 28 days. As a result, the results satisfy the KS of the target product proposed in this study. Therefore, this study presents the possibility of using precast concrete products by developing non-sintered cement binders using industrial by-products.

Properties of Non Sintered Cement Mortar using Ferro Nickel Slag (페로니켈 슬래그를 사용한 비소성 시멘트 모르타르의 특성)

  • Youn, Min-Sik;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.641-649
    • /
    • 2022
  • This study aims to completely develop a non sintered cement mortar using industrial by-products. To replace Portland cement, blast furnace slag, circulating fluidized bed fly ash, and pulverized coal fly ash were used, and natural aggregates were substituted with ferronickel slag. To understand the characteristics of the non sintered cement mortar to which ferronickel slag is applied, an experiment was conducted by classifying the particle size. Fluidity and workability were confirmed through the flow test, and bending and compressive strength tests were conducted at 3, 7, and 28 days of age. In addition, durability was identified through a chloride ion penetration test. Through the study, it is judged that the binder, which completely replaced cement and aggregate, has high potential of being used as a construction material. Notably, it was confirmed to be advantageous for strength and durability.

Physical Properties of Non-sintered Cement Mortar with Heat Treatment after Steam Curing (비소성 시멘트 모르타르의 증기양생 후 열처리에 따른 물리적 특성)

  • Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.97-104
    • /
    • 2021
  • This study aims to develop non-sintered cement that can replace the Portland cement by utilizing industrial by-products. As a suggestion, the physical properties of non-sintered cement mortar depending on the curing method were investigated with ground granulated blast furnace slag, class C fly ash, and class F fly ash. As a result of the study, it was found that the strength performance and absorption rate were improved through the heat treatment process after steam curing. It was confirmed through crystal phase analysis that the hydration was accelerated after heat treatment, and the bonding material formed a dense internal structure.

Fluidization characteristics of Non-sirtered cement mortar using blast furnace slag and fly ash (고로슬래그와 플라이애시를 이용한 비소성 시멘트 모르타르의 유동화 특성)

  • Byun, Hui-Jae;Na, Hyeong-Won;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.186-187
    • /
    • 2022
  • The purpose of this study was to give fluidizing properties to non-sirtered cement made using by-products that can replace Portland cement by using a fluidizing agent. Blast furnace slag, C-type fly ash, and F-type fly ash were used for non-sirtered cement, and sand was used for aggregate. The amount of fluidizing agent used was fixed at 1%, and the water-cement ratio (W/C) was different by setting the binder blending ratio of the non-sintered cement differently, and the fluidity test and flow were compared. As a result of the experiment, when the flow standard was 170mm when the fluidizing agent was used, the fluidizing properties were shown at an average water-cement ratio (W/C) of 36%. Through this study, it was confirmed that the fluidizing properties appeared when the fluidizing agent was used in non-sintered cement.

  • PDF

Study of Non Sintered Cement Mortar Using Nanoslag and Alkali Activator (나노슬래그와 알칼리 자극제를 활용한 비소성 시멘트 모르타르에 관한 연구)

  • Jeong, Sung-Wook;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • As global warming has had harmful effects on the environment, the construction industry has made efforts to reduce the amount of $CO_2$ generated in the process of cement production. There is an urgent need for an alternative material that can replace cement. To improve the initial strength and economical efficiency pointed out as problems, this research was conducted for Blast Furnace Slag (BFS), an industrial byproduct. Non-sintering cement (NSC) was used by minimizing the amount of high-priced alkali activators. By using Nano-technology, fineness has been maximized, to enhance the initial strength of BFS. This research is based on non-sintered cement replaced by nano-slag using alkali activators, and the fundamental properties and quality of the non-sintered cement were investigated. A variety of activators were used, up to 10 percent of the slag weight. This research aims to present fundamental data through a comparative analysis of flexural strength, compressive strength, time of setting, diabetic temperature, and rising heat.

Effect of Partial Replacement of Water with Photosynthetic Bacteria on the Level of CO2 Absorption in Mortar (광합성균을 혼입한 시멘트 모르타르의 CO2 흡수성능에 관한 기초적 연구)

  • Joung, Jae-Ho;Lee, Gun-Cheol;Yoon, Seung-Joe;Joe, Jae-Heung;Choi, Jung-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • In this research, the $CO_2$ absorption performance of mortar was investigated. The level of $CO_2$ absorption in mortar with various binders including cement and nonsintered cement was examined. As a result for the mortar with photosynthetic bacteria, the compressive strength was similar to the one without the bacteria at early age but decreased at the age of 28 days. However, for the $CO_2$ absorption, with photosynthetic, the performance of the mortar with OPC, and nonsintered cement deceased to 21%(234 ppm) and 19.7%(243 ppm) respectively after 12 hours age.

Properties of Non-Sintered Cement Mortar using Alkali and Sulfate Mixed Stimulants Accroding to Curing Method (양생방법에 따른 알칼리 및 황산염 복합자극제를 사용한 비소성 시멘트 모르타르의 특성)

  • Park, Sung-Joon;Kim, Ji-Hoon;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Entering the 20th century since the industrial revolution, the cement has been widely used in the field of construction and civil engineering due to the remarkable development of construction industry. However, result from that development, each kind of industrial by-products and waste and the carbon dioxide generated in the process of cement production cause air pollution and environmental damage so earth is getting sick now slowly. Therefore, we have to recognize importance about this. It means that the time taking specific and long-term measures have come. In this research paper, as substitution of the cement generating environmental pollution, we investigate the hydration reaction of non-Sintered Cement mortar mixed with GBFS, active stimulant of alkaline and sulphate series by using SEM and XRD, mechanical and chemical properties according to the curing method. As a result of this experiment, NSC realized outstanding strength for water curing and steam curing. It means that it has a good possibility as substitution of cement. From now on, it can be used for structure satisfying specific standard. We expect to find a substitution of outstanding cement by progressing continuous research making the best use of pros and cons according to the curing method.

Strength Characteristics of Mortar with Diatomite Powder as an Admixture (혼화재료로서 규조토 분말을 사용한 모르타르의 강도 특성)

  • Choi, Jaejin;Park, Hongtae;Kim, Jaewoo
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.3
    • /
    • pp.329-336
    • /
    • 2015
  • When diatomite powder was used as an admixture in mortar, its effects on the mortar strength was examined by experimental tests. For the tests, 4 kinds of commercially available diatomite powder were purchased ; one non-calcined product, one calcined product, and flux-calcined product two. The compressive and flexural strength of the mortar according to the increase of added amount of calcined diatomite powder increased at all test ages(7, 28, and 56 days). However, the use of non-calcined diatomite powder worsened the fluidity of mortar severely and that caused much more required water content. And flux-calcined product did not show useful effect on the mortar strength.