• Title/Summary/Keyword: 비선형 k-모델

Search Result 1,170, Processing Time 0.036 seconds

Stiffness of Bucket Foundation in Sand (사질토 지반에 설치된 버킷기초의 강성)

  • Park, Jeongseon;Park, Duhee;Yoon, Sewoong;Jang, Hwasup;Yoon, Jinam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.5-15
    • /
    • 2017
  • To perform an integrated load analysis carried out to evaluate the stability evaluation of wind turbine generators, the six degree-of-freedom stiffness matrix of foundation, which describes relationships between loads and displacement, is needed. Since the foundation stiffness should accurately reflect the shape of foundation and the condition of soil, it is necessary to calculate the stiffness of the bucket foundation that considers the elasto-plastic behavior of the soil. In this study, finite element analyses were performed for a range of soils and shapes of bucket foundations to estimate the foundation stiffness. Normalized stiffness curves are developed from respective numerical simulations. Proposed results are considered to be useful because they can be directly applied in the design.

Analysis of Dynamic Behavior of Floating Slab Track Using a Nonlinear Viscoelastic Spring Model (비선형 점탄성 스프링 모델을 이용한 플로팅 슬래브 궤도의 동적 거동 해석)

  • Jang, Seung Yup;Park, Jin Chul;Hwang, Sung Ho;Kim, Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1078-1088
    • /
    • 2012
  • Recently, the vibration and structure-borne noise induced by passing trains are of great concerns, and the floating slab track is highlighted as one of most efficient alternatives to reduce the railway vibration. However, due to the non-linearity and viscosity of rubber spring used in the floating slab track, its dynamic behavior is very complex. In this study, therefore, to simulate the dynamic behavior of floating slab track with a better accuracy, a nonlinear viscoelastic rubber spring model that can be incorporated in commercial finite element analysis codes has been proposed. This model is composed of a combination of elastic spring element, friction element and viscous element, and termed the "generalized friction viscoelastic model(GFVM)". Also, in this study, the method to determine the model parameters of GFVM based on Berg's 5-parameter model was presented. The results of the finite element analysis with this rubber spring model exhibit very good correlation with the test results of a laboratory mock-up test, and the feasibility of GFVM has been verified.

Comparative Study of Modeling of Hand Motion by Neural Network and Kernel Regression (손 동작을 모사하기 위한 신경회로망과 커널 회귀의 모델링 비교 연구)

  • Yang, Hac-Jin;Kim, Hyung-Tae;Kim, Seong-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.399-405
    • /
    • 2010
  • The grasping motion of a person's hand for a simplified degree of freedom was modeled by using the photographic motion measured by a high-speed camera. The mathematical expression of distal interphalangeal (DIP) motion was developed by using relation models of the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) motions to reduce the degree of freedom. The mathematical expression for humanoid-hand operation obtained using a learning algorithm with a neural network and using a kernel regression model were compared. A feasible model of hand operation was obtained on the basis of comparative data analysis by using the kernel regression model.

Dynamic Growth Model for Pinus densiflora Stands in Anmyun-Island (안면도(安眠島) 소나무 임분(林分)의 동적(動的) 생장(生長)모델)

  • Seo, Jeong-Ho;Lee, Woo-Kyun;Son, Yowhan;Ham, Bo-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.725-733
    • /
    • 2001
  • In this study, the relationship between growth factors for Pinus densiflora stands in Anmyun-Island was analyzed and dynamic growth model was prepared. A total of 96 sample plots was investigated in which dbh and height of individual trees were measured. From these plot data, quadratic mean dbh, mean height, dominant tree height, stem number per ha, basal area per ha and volume per ha were estimated. Several regression equations between growth factors were derived using NLIN and REG procedure of SAS. And dynamic growth model, in which the equations were interactively linked, was prepared for the prediction of stand growth and yield under different management regime. The predictions of dynamic growth model were found to be coincided with general growth principles. The dynamic growth model was considered as adequate for predicting growth and yield of Pinus densiflora stand in Anmyun-Island. In practice, the dynamic growth model can be applied for predicting the growth and development of stand for various forest treatments and for decision-making in forest management.

  • PDF

The Effect of Internal Row on Marine Riser Dynamics (Riser의 내부유체 흐름이 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.75-90
    • /
    • 1995
  • A mathematical model for the dynamic analysis of a riser system with the inclusion of internal flow and nonlinear effects due to large structural displacements is developed to investigate the effect of internal flow on marine riser dynamics. The riser system accounts fir the nonlinear boundary conditions and includes a steady flow inside the pipe which is modeled as an extensible or inextensible. tubular beam subject to nonlinear three dimensional hydrodynamic loads such as current or wave excitation. Galerkin's finite element approximation and time incremental operator are implemented to derive the matrix equation of equilibrium for the finite element system and the extensibility or inextensibility condition is used to reduce degree of freedom of the system and the required computational time in the case of a nonlinear model. The algorithm is implemented to develop computer programs used in several numerical applications. The investigations of the effect of infernal flow on riser vibration due to current or wave loading are performed according to the change of various parameters such as top tension, internal flow velocity, current velocity, wave period, and so on. It is found that the effect of internal flow can be controlled by the increase of top tension. However, careful consideration has to be given in the design point particularly for the long riser under the harmonic loading such as waves. And it is also found that the consideration of nonlinear effects due to large structural displacements increases the effect of internal flow on riser dynamics.

  • PDF

A numerical study on the optimum spacing of disc cutters considering rock strength and penetration depth using discrete element method (암반강도 및 압입깊이에 따른 디스크커터의 최적간격 산정을 위한 개별요소법 기반 수치해석 연구)

  • Lee, Sang Yun;Song, Ki-il;Jung, Ju Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.383-399
    • /
    • 2020
  • Optimizing the spacing of the disc cutter is a key element in the design of the TBM cutter head, which determines the drilling performance of the TBM. The full-scale linear cutting test is known as the most reliable and accurate test for calculating the spacing of the disc cutter, but it has the disadvantage of costly and time-consuming for the full-scale experiment. In this study, through the numerical analysis study based on the discrete element method, the tendency between Specific Energy-S/P ratio according to uniaxial compression strength and penetration depth of rock was analyzed, and the optimum spacing of 17-inch disc cutter was derived. To examine the appropriateness of the numerical analysis model, the rolling force acting on the disc cutter was compared and reviewed with the CSM model. As a result of numerical analysis for the linear cutting test, the rolling force acting on the disc cutter was analyzed to be similar to the rolling force derived from the theoretical formula of the CSM model. From the numerical analysis on 5 UCS cases (50 MPa, 70 MPa, 100 MPa, 150 MPa, 200 MPa), it is found that the range of the optimum spacing of the disc cutter decreases as the rock strength increases. And it can be concluded that 80~100 mm of disc cutter spacing is the optimum range having minimum specific energy regardless of rock strength. This tends to coincide with the optimal spacing of previously reported disk cutters, which underpins the disk cutter spacing calculated through this study.

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis (다변량 통계 분석을 이용한 결측 데이터의 예측과 센서이상 확인)

  • Lee, Changkyu;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.87-92
    • /
    • 2007
  • Recently, developments of process monitoring system in order to detect and diagnose process abnormalities has got the spotlight in process systems engineering. Normal data obtained from processes provide available information of process characteristics to be used for modeling, monitoring, and control. Since modern chemical and environmental processes have high dimensionality, strong correlation, severe dynamics and nonlinearity, it is not easy to analyze a process through model-based approach. To overcome limitations of model-based approach, lots of system engineers and academic researchers have focused on statistical approach combined with multivariable analysis such as principal component analysis (PCA), partial least squares (PLS), and so on. Several multivariate analysis methods have been modified to apply it to a chemical process with specific characteristics such as dynamics, nonlinearity, and so on.This paper discusses about missing value estimation and sensor fault identification based on process variable reconstruction using dynamic PCA and canonical variate analysis.

Design and Implementation of Parametric Modeler for Retractable Roof Three-Dimensional Truss (개폐식 지붕 입체트러스를 위한 파라메트릭 모델러의 설계와 구현)

  • Jeong, Jin-Young;Joung, Bo-Ra;Kim, Chee-Kyeong;Lee, Si Eun;Kim, Si-Uk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The purpose of this study is to implement modeling by applying the parametric technique to the atypical trusses of rigid retractable large space structures. The retractable large space structure requires a lot of time and skill in modeling nonlinear shapes or generating, interpreting, and reviewing many models by alternative. To solve these problems, we introduce firstly parametric modeling tool, secondly, we analyze the connection of atypical three-dimensional trusses of a rigid retractable large-space structure, and finally model it as parametric components of the developed trusses. Therefore, it is a future study to make effective modeling of the openable roof by developing the components that can realize the modeling of the truss classified by the opening and closing method, respectively.

A Study on Performance Enhancement in Simulation Fidelity Using a Meta Model (메타모델(Meta Model)을 활용한 시뮬레이터 구현충실도 향상 연구)

  • Cho, Donghyurn;Kwon, Kybeom;Seol, Hyunju;Myung, Hyunsam;Chang, YoungChan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.884-892
    • /
    • 2014
  • In this paper, a meta model using neural network substituting for the simulator aerodynamic database is proposed to improve simulation fidelity near the critical flight area and real-time performance. It is shown that the accuracy of the meta model is relatively higher than the existing table lookup methods for arbitrary nonlinear database and the calculation speed is also improved for a specific F-16 maneuver simulation. The increase in the number of hidden nodes in the meta model for better accuracy of database representations causes a delay in function generation due to increased time required for computing exponential functions. In order to make up this drawback, we additionally study the fast exponential function method.

LQ control by linear model of Inverted Pendulum for Robust Control of Robotic Vacuum Sweeping Machine (연마기 로봇의 강인제어를 위한 역진자의 선형화 모델을 통한 LQ제어)

  • Kim, Soo-Young;Lee, Jae-Duck;Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.529-532
    • /
    • 2012
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test robust algorithm for sweeping machine. The balancing of an inverted pendulum by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.

  • PDF