• Title/Summary/Keyword: 비선형 편향오차

Search Result 4, Processing Time 0.019 seconds

A study on the characteristic analysis and correction of non-linear bias error of an infrared range finder sensor for a mobile robot (이동로봇용 적외선 레인지 파인더센서의 특성분석 및 비선형 편향 오차 보정에 관한 연구)

  • 하윤수;김헌희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.641-647
    • /
    • 2003
  • The use of infrared range-finder sensor as the environment recognition system for mobile robot have the advantage of low sensing cost compared with the use of other vision sensor such as laser finder CCD camera. However, it is not easy to find the previous works on the use of infrared range-finder sensor for a mobile robot because of the non-linear characteristic of that. This paper describes the error due to non-linearity of a sensor and the correction of it using neural network. The neural network consists of multi-layer perception and Levenberg-Marquardt algorithm is applied to learning it. The effectiveness of the proposed algorithm is verified from experiment.

Comparison of Univariate Kriging Algorithms for GIS-based Thematic Mapping with Ground Survey Data (현장 조사 자료를 이용한 GIS 기반 주제도 작성을 위한 단변량 크리깅 기법의 비교)

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.321-338
    • /
    • 2009
  • The objective of this paper is to compare spatial prediction capabilities of univariate kriging algorithms for generating GIS-based thematic maps from ground survey data with asymmetric distributions. Four univariate kriging algorithms including traditional ordinary kriging, three non-linear transform-based kriging algorithms such as log-normal kriging, multi-Gaussian kriging and indicator kriging are applied for spatial interpolation of geochemical As and Pb elements. Cross validation based on a leave-one-out approach is applied and then prediction errors are computed. The impact of the sampling density of the ground survey data on the prediction errors are also investigated. Through the case study, indicator kriging showed the smallest prediction errors and superior prediction capabilities of very low and very high values. Other non-linear transform based kriging algorithms yielded better prediction capabilities than traditional ordinary kriging. Log-normal kriging which has been widely applied, however, produced biased estimation results (overall, overestimation). It is expected that such quantitative comparison results would be effectively used for the selection of an optimal kriging algorithm for spatial interpolation of ground survey data with asymmetric distributions.

A comparison of imputation methods using nonlinear models (비선형 모델을 이용한 결측 대체 방법 비교)

  • Kim, Hyein;Song, Juwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.543-559
    • /
    • 2019
  • Data often include missing values due to various reasons. If the missing data mechanism is not MCAR, analysis based on fully observed cases may an estimation cause bias and decrease the precision of the estimate since partially observed cases are excluded. Especially when data include many variables, missing values cause more serious problems. Many imputation techniques are suggested to overcome this difficulty. However, imputation methods using parametric models may not fit well with real data which do not satisfy model assumptions. In this study, we review imputation methods using nonlinear models such as kernel, resampling, and spline methods which are robust on model assumptions. In addition, we suggest utilizing imputation classes to improve imputation accuracy or adding random errors to correctly estimate the variance of the estimates in nonlinear imputation models. Performances of imputation methods using nonlinear models are compared under various simulated data settings. Simulation results indicate that the performances of imputation methods are different as data settings change. However, imputation based on the kernel regression or the penalized spline performs better in most situations. Utilizing imputation classes or adding random errors improves the performance of imputation methods using nonlinear models.

A BLUE Estimator of 3-D Positioning by TDOA Method (TDOA 방식 기반 3-D 위치 추정을 위한 BLUE 추정기)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Kwon, Tac-Yung;Lee, Chang-Bok;Park, Byung-Koo;Lee, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.10
    • /
    • pp.912-920
    • /
    • 2012
  • In this paper, we derived a closed-form equation of a Best Linear Unbiased Estimator (BLUE) estimator for the 3 dimensional estimation of the position of the emitter based on the Time Difference of Arrival (TDOA) technique. The BLUE derived for the case of estimating 3 dimensional position of the emitter with 4 base stations or sensors, and for this purpose, we used an approximated equation of the TDOA hyperbola equation obtained from the first order Taylor-series after setting the reference points of the position. The derived equation can be used for any kind of noises which are uncorrelated in each other in the TOA measurement noises and for a white Gaussian noise also.