• Title/Summary/Keyword: 비선형 정적해석

Search Result 291, Processing Time 0.023 seconds

Evaluation of the Mechanical Properties of Electroformed Multi-nano Layers by the Dynamic-Nano Indentation Method (동적 나노압침법과 유한요소 해석에 의한 전주된 Invar-Cu 복합 박막층의 기계적 특성 평가)

  • Gang, Bo-Gyeong;Han, Sang-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.201.1-201.1
    • /
    • 2016
  • 전주된 Invar (Fe-35%Ni) 박판 위에 증착된 Cu 박막은 스퍼터 전력량이 증가할수록 증착속도가 증가하였다. Cu/Invar 박판이 Invar 박판보다 면저항 값이 34%로 작았다. Invar 박판 위에 Cu가 증착되면 최대자화와 투자율은 각각 40.3, 65.0 [%] 감소하였다. Cu 박막의 탄성하강강성도, 마찰계수, 피로한계는 각각 45, 0.130, 0.093 이었다. 동적 나노 압침법으로 얻은 Invaar/Cu 박막의 하중-시간-변위 곡선의 가장 큰 차이는 탄성하강강성도(elastic stiffness) 이었다. 미세경도와 나노경도의 실험적 관계식은 $Y[GPa]=9.18{\times}10^{-3}X[Hv]$ 이었다. 나노압침선단의 하중분포를 이차원 선형 및 비선형 유한요소해석을 통하여 1.0 [mN] 의 정적하중을 가한 Cu 박막은 486 [mN] 으로 예측되었다. 이는 표면탐침현미경으로 관찰한 압흔의 변형정도와 유사한 경향을 보였다.

  • PDF

Design of Supplemental Dampers for Seismic Reinforcement of Structures (구조물의 내진보강을 위한 부가 감쇠장치의 설계)

  • Kim, Jin-Koo;Choi, Hyun-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.109-119
    • /
    • 2004
  • A design procedure for velocity-dependent supplemental dampers, such as viscous or viscoelastic dampers, required to meet the desired performance objectives was developed using displacement spectra. The amount of supplemental damping required to satisfy given performance limit state was obtained first from the nonlinear static procedure using displacement spectra, then dampers were appropriately distributed throughout the stories to realize the required damping. The proposed method was applied to multi-story steel frames, and the structures were analyzed by time history analysis to validate the accuracy of the design procedure. According to the analysis results the maximum displacements of the model structures retrofitted by the supplemental dampers turned out to be restrained well within the given target values.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

Dynamic Analysis of Guyline in the Offshore Guyed Towers Considering Sea Bed Contact Conditions (심해용 Guyed Tower 계류선의 해저면과의 접촉조건을 고려한 동적 해석)

  • 이명우;박우선;박영석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.244-254
    • /
    • 1991
  • The numerical analysis on tile behaviour of mooring system in the offshore guyed tower is presented. The governing equilibrium equations are derived by the principle of virtual work. The drag and inertia effects of fluid are included in a Morrison type equation. The finite element method is used in the computation. Geometric nonlinearities for the analysis of the mooring line are considered in which both modified Newton-Raphson method and Newmark-$\beta$ method are employed. Numerical experiments show the validity and the capability of the developed mathematical formulation.

  • PDF

A Study on Seismic Performance of External Reinforcement for Unreinforced Masonry Buildings (비보강 조적조 건축물의 외부 보강에 따른 내진성능 연구)

  • Jong-Yeon Kim;Jong Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • In this study, we evaluated the seismic performance of a masonry building that was not designed to be earthquake-resistant and attempted to improve the seismic performance by adopting a seismic reinforcement method on the exterior of the building. In addition, the building seismic design standards and commentary(KDS 41 17 00:2019) and existing facility(building) seismic performance evaluation methods were applied to evaluate seismic performance, and a pushover analysis was performed using non-linear static analysis. As the result of this study, it was determined that seismic reinforcement was urgent because the distribution rate of earthquake-resistant design of houses in Korea was low and masonry structures accounted for a large proportion of houses. When reinforcing the steel beam-column+brace frame in a masonry building, the story drift angle was 0.043% in the X direction and 0.047% in the Y direction, indicating that it satisfied the regulations. The gravity load resistance capacity by performance level was judged to be a safe building because it was habitable in both X and Y directions. In conclusion, it is believed that the livability and convenience of the house can be secured by reinforcing the exterior of the building and the seismic performance and behavior of the structure can be clearly predicted.

Nonlinear Structural Analysis of the Spent Nuclear Fuel Disposal Canister Subjected to an Accidental Drop and Ground Impact Event (추락낙하 사고 시 지면과 충돌하는 고준위폐기물 처분용기의 비선형구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.75-86
    • /
    • 2019
  • The biggest obstacle in the nuclear power generation is the high level radioactive waste such as the spent nuclear fuel. High level radioactivities and generated heat make the safe treatment of the spent nuclear fuel very difficult. Nowadays, the only treatment method is a deep geological disposal technology. This paper treats the structural safe design problem of the spent nuclear fuel disposal canister which is one of the core technologies of the deep geological disposal technology. Especially, this paper executed the nonlinear structural analysis for the stresses and deformations occurring in the canister due to the impulsive force applied to the spent nuclear fuel disposal canister in the case of an accidental drop and ground impact event from the transportation vehicle in the repository. The main content of the analysis is about that the impulsive force is obtained using the commercial rigid body dynamic analysis computer code, RecurDyn, and the stress and deformation caused by this impulsive force are obtained using the commercial finite element static structural analysis computer code, NISA. The analysis results show that large stresses and deformations may occur in the canister, especially in the rid or the bottom of the canister, due to the impulsive force occurring during the collision impact period.

Free Vibrations of Ocean Cables under Currents (조류력을 받는 해양케이블의 자유진동해석)

  • 김문영;김남일;윤종윤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.231-237
    • /
    • 1999
  • A geometric non-linear finite element formulation of spatial ocean cable under currents is presented using multiple noded curved cable elements. Tangent stiffness and mass matrices for the isoparametric cable ele¬ment are derived and the initial equilibrium state of ocean cable subjected to self-weights, buoyancy, and current as well as support motions is determined using the load incremental method. Free vibration analysis of ocean cables is performed based on the initial equilibrium configuration. Numerical examples are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate dynamic characteristics of ocean cables.

  • PDF

A Numerical Study on the Static Strength of Tubular X-Joints With an Internal Ring Stiffener (환보강 X형 관이음부의 정적강도에 관한 수치적 연구)

  • Ryu Yeon-Sun;Cho Hyun-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.265-275
    • /
    • 2005
  • The objective of this paper is to numerically assess the behavior of tubular X-joints with an internal ing stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. Numerical and experimental results are in good agreement for tubular X-joints. The chord lengths of simple and ring-stiffened X-joints are suggested to reduce chord end effect. And, internal ring stiffener is found to be efficient In improving static strength of tubular X-joints. Maximum strength ratios are calculated as $1.5\sim3.5$. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae for tubular X-joints with an internal ring stiffener are proposed.

Seismic Retrofit of Old Reinforced Concrete Buildings (노후 RC 건물의 내진 보강)

  • Huynh, Chanh Trung;Park, Jong-Yeol;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.150-153
    • /
    • 2010
  • 본 논문에서는 비내진 설계된 철근콘크리트 골조로 이루어진 저층의 노후공동주택의 내진성능을 향상시키기 위한 구조물의 보강방법에 대해 연구하였다. 이를 위하여 비선형 정적 해석과 시간 이력 해석을 수행하여 추가되는 철골 모멘트골조와 가새의 내진보강 효과를 검증하였다. 해석결과에 따르면 $H150{\times}150{\times}6{\times}8$로 구성된 철골 모멘트골조는 탄성구간에서는 하중의 약 1%, 구조물이 항복한 이후, 최대 3.5%까지 하중을 부담하여 자체적으로 지진하중에 대한 저항 성능은 크지 않았다. 그러나 철골 모멘트골조와 가새를 동시에 사용함으로써 접합부의 조기 파괴를 방지하고 구조물의 내진성능을 큰 폭으로 증진시킬 수 있는 것으로 나타났다.

  • PDF

Effects of Strength Reduction Factors for Capacity Spectrum Analysis of Bridge Structures using Inelastic Demand Spectrum (비탄성 요구도 스펙트럼을 이용한 교량구조물의 역량스펙트럼 해석에 대한 강도감소계수의 영향)

  • Song, Jong-Keol;Jin, He-Shou;Jang, Dong-Hui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.25-37
    • /
    • 2008
  • The capacity spectrum method (CSM) is a simple and graphical seismic analysis procedure. Originally, it has been developed for buildings, but now its applicability has been extended to bridge structures. It is based on the capacity curve estimated by pushover analysis and demand spectrum reduced from linear elastic design spectrum by using effective damping or strength reduction factor. In this paper, the inelastic demand spectrum as the reduced demand spectrum is calculated from the linear elastic design spectrum by using the several formulas for the strength reduction factor. The effects of the strength reduction factor for the capacity spectrum analysis are evaluated for 3 types of symmetric and asymmetric bridge structures. To investigate an accuracy of the CSM which several formulas for strength reduction factor were applied, the maximum displacements estimated by the CSM are compared with the results obtained by nonlinear time history analysis for 8 artificially generated earthquakes. The maximum displacements estimated by the CSM using the SJ formula among the several strength reduction factors provide the most accurate agreement with those calculated by the inelastic time history analysis.