• Title/Summary/Keyword: 비선형 전처리기

Search Result 5, Processing Time 0.019 seconds

Partitioned Block Frequency Domain Adaptive Filtering Algorithm for Nonlinear Acoustic Echo Cancellation (비선형 음향 반향 제거를 위한 파티션 블록 주파수 영역 적응 필터링 알고리즘)

  • Lee, Keunsang;Ji, Youna;Park, Youngcheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.177-183
    • /
    • 2015
  • This paper proposes a robust nonlinear acoustic echo canceller (NAEC) which is effective for modeling the nonlinearity of a speaker module and the long acoustic echo path within a speech communication environment. The proposed NAEC utilizes a sigmoid pre-processor for modeling the speaker nonlinearity and a partitioned block frequnecy-domain adaptive filter for identifying the acoustic echo path with small delay. Simulation results confirmed that the proposed algorithm achieves excellent performance with much lower computational complexity than the previous NAEC.

Performance Improvement of Stereo Acoustic Echo Canceler Using Gram-Schmidt Orthogonality Principle (그람-슈미트 (Gram-Schmidt) 직교원리를 이용한 스테레오 음향 반향 제거기의 성능향상)

  • 김현태;박장식;손경식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.28-34
    • /
    • 2001
  • In stereo acoustic echo canceller scheme, coefficients of adaptive filter converge very slowly or misconverge to real acoustic echo path in receiving room. This is due to cross-correlation in stereo signals. In this paper, a new preprocess algorithm is proposed to improve the performance of stereo AEC(acoustic echo canceller) without computational burden. The proposed algorithm reduces cross-correlation using Gram-Schmidt orthogonality principles and nonlinear filtering. Computer simulations demonstrate that this algorithm performs well compared to conventional ones. When the acoustic path of transmitting room is changed, stereo AEC using proposed algorithm is well performed.

  • PDF

Design of IIR Filters with Prefilter-Equalizer Structure for Narrowband Applications (협대역 응용 시스템을 위한 전처리기-등화기 구조의 IIR 여파기 설계 방법)

  • Oh Hyuk-jun;Ahn Hee-june
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.143-152
    • /
    • 2005
  • Optimal methods for designing multiplierless IIR filters with cascaded prefilter-equalizer structures are proposed for narrowband applications. Assuming that an U filter consists of a cyclotomic Polynomial (CP) prefilter and an all-Pole equalizer based on interpolated first order polynomial (IFOP), in the proposed method the prefilter and equalizer are simultaneously designed using mixed integer linear programming (MILP). The resulting filter is a cascaded filter with minimal complexity. In addition, MtP tries to minimize both computational complexity and phase response non-linearity. Design examples demonstrate that the proposed methods produce a more efficient cascaded prefilter-equalizer than existing methods.

Design of FIR filters with Prefilter-Equalizer Structure for Narrowband Communication Systems (협대역 통신시스템을 위한 전처리기-등화기 구조의 FIR 여파기 설계)

  • Oh Hyukjun;Ahn Heejune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.577-584
    • /
    • 2005
  • Optimal methods for designing multiplierless minimal complexity FIR filters with cascaded prefilter-equalizer structures are proposed for narrowband communication systems. Assuming that an FIR filter consists of a cyclotomic polynomial(CP) prefilter and an interpolated second order polynomial(ISOP) equalizer, in the proposed method the prefilter and equalizer are simultaneously designed using mixed integer linear programming(MILP). The resulting filter is a cascaded filter with minimal complexity. Design examples demonstrate that the proposed methods produce a more computationally efficient cascaded prefilter-equalizer than other existing filters.

Auditory Representations for Robust Speech Recognition in Noisy Environments (잡음 환경에서의 음성 인식을 위한 청각 표현)

  • Kim, Doh-Suk;Lee, Soo-Young;Kil, Rhee-M.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.90-98
    • /
    • 1996
  • An auditory model is proposed for robust speech recognition in noisy environments. The model consists of cochlear bandpass filters and nonlinear stages, and represents frequency and intensity information efficiently even in noisy environments. Frequency information of the signal is obtained by zero-crossing intervals, and intensity information is also incorporated by peak detectors and saturating nonlinearities. Also, the robustness of the zero-crossings in estimating frequency is verified by the developed analytic relationship of the variance of the level-crossing interval perturbations as a function of the crossing level values. The proposed auditory model is computationally efficient and free from many unknown parameters compared with other auditory models. Speaker-independent speech recognition experiments demonstrate the robustness of the proposed method.

  • PDF