• 제목/요약/키워드: 비선형 적응제어

검색결과 288건 처리시간 0.027초

비선형 외란 관측기를 이용한 유도전동기의 강인 적응 백스테핑 제어 (Robust Adaptive Backstepping Control of Induction Motors Using Nonlinear Disturbance Observer)

  • 이은욱
    • 전기학회논문지P
    • /
    • 제57권2호
    • /
    • pp.127-134
    • /
    • 2008
  • In this paper, we propose a robust adaptive backstepping control of induction motors with uncertainties using nonlinear disturbance observer(NDO). The proposed NDO is applied to estimate the time-varying lumped uncertainty which are derived from unknown motor parameters and load torque, but NDO error does not converge to zero since the derivate of lumped uncertainty is not zero. Then the fuzzy neural network(FNN) is presented to estimate the NDO error such that the rotor speed to converge to a small neighborhood of the desired trajectory. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer. Simulation results are provided to verify the effectiveness of the proposed approach.

비어파인 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기 (Adaptive Fuzzy Sliding-Mode Controller for Nonaffine Nonlinear Systems)

  • 박장현;김성환;유영재;문채주
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.697-700
    • /
    • 2005
  • An adaptive fuzzy sliding-mode controller (SMC) for uncertain or ill-defined single-input single-output (SISO) nonaffine nonlinear systems is proposed. By using the universal approximation property of the fuzzy logic system (FLS), it is tuned on-line to cancel the unknown system nonlinearity. We adopt a self-structuring FLS to guarantee global stability of the closed-loop system rather than semi=global boundedness. The control and adaptive laws are derived so that the estimated fuzzy parameters are bounded and the sliding condition is satisfied.

  • PDF

성능개선을 위한 새로운 신경망 비선형 적응제어기 설계 (A Design of the New Neural Adaptive Controller for Improving Performance)

  • 이병기;권대업;최재석;이순영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2383-2385
    • /
    • 2000
  • It is proposed a new algorithm for a neural network adaptive tracking control scheme to improve performance in this paper. In supervisory control scheme, the upper and lower bound of the parameters are directly estimated by using RBF neural network without their information, and the weighting parameters of the control input are adjusted on-line by adaptation laws. As a result, the proposed algorithm assured that the output errors go to zero without relation to existing minimum approximation errors and disturbances. The effectiveness of the proposed algorithm is demonstrated through the simulation of one-link rigid robotics manipulator.

  • PDF

근사화 오차의 유계상수 추정과 동적인 퍼지규칙을 이용한 비선형 계통에 대한 강인한 적응 퍼지 제어기 설계 (Design of Robust Adaptive Fuzzy Controller for Uncertain Nonlinear System Using Estimation of Bounds for Approximation Errores and Dynamic Fuzzy Rule)

  • 박장현;서호준;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2308-2310
    • /
    • 2000
  • In adaptive fuzzy control, fuzzy systems are used to approximate the unknown plant nonlinearities. Until now, most of the papers in the field of controller design for nonlinear system using fuzzy systems considers the affine system with fixed grid-rule structure. This paper considers general nonlinear systems and dynamic fuzzy rule structure. Adaptive laws for fuzzy parameters and fuzzy rule structrue are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

면역 피드백 메카니즘과 경사감소학습에 기초한 비선형 적응 PID 제어기 설계 (Nonlinear Adaptive PID Controller Desist based on an Immune Feedback Mechanism and a Gradient Descent Learning)

  • 박진현;최영규
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.113-117
    • /
    • 2002
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But it is difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PR controller based on an Immune feedback mechanism and a gradient descent teaming. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor Is peformed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation

적외선 영상의 Salt-Pepper 잡음제거를 위한 적응 비선형 필터 (Adaptive Nonlinear Filter for Removal of Salt-Pepper Noise in Infrared Image)

  • 이재일;김성환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권9호
    • /
    • pp.429-434
    • /
    • 2006
  • In this paper, detection based - adaptive windowed nonlinear filter(DB-AWNF) is proposed for removing salt-pepper noise in infrared image. This filter is composed of impulse detector and window-size-variable median filters. Impulse detector checks whether current pixel is impulse or not using range function and nonlinear location estimator. If impulse is detected, current pixel is filtered according to four kinds of local masks by use of median filter. If not, current pixel is delivered to output like identity filter. In Qualitative view, the proposed could have removed heavy corrupted noise up to 30% and reserved the details of image. In quantitative view, PSNR was measured. The proposed could have about 12-31[dB] more improved performance than those of median $(3{\times}3)$ filter and 13-29[dB] more improved performance than those of median $(5{\times}5)$ filter.

완전 궤환 비선형 계통에 대한 자기 구조화 퍼지 시스템을 이용한 상태변수 및 출력 궤환 적응 제어기 (State- and Output-feedback Adaptive Controller for Pure-feedback Nonlinear Systems using Self-structuring Fuzzy System)

  • 박장현;김성환;장영학;유영재
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1319-1329
    • /
    • 2012
  • Globally stabilizing adaptive fuzzy state- and output-feedback controllers for the fully nonaffine pure-feedback nonlinear system are proposed in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controllers require no backstepping design procedures. Avoiding backstepping makes the controller structure and stability analysis to be considerably simplified. For the global stabilty of the clossed-loop system, the self-structuring fuzzy system whose memebership functions and fuzzy rules are automatically generated and tuned is adopted. The proposed controllers employ only one fuzzy logic system to approximate unknown nonlinear function, which highlights the simplicity of the proposed adaptive fuzzy controller. Moreover, the output-feedback controller of the considered system proposed in this paper have not been dealt with in any literature yet.

섭동 순궤환 비선형 계통의 신경망 직접 적응 제어기 (Direct Adaptive Neural Control of Perturbed Strict-feedback Nonlinear Systems)

  • 박장현;김성환;유영재
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1821-1826
    • /
    • 2009
  • An adaptive neural controller for perturbed strict-feedback nonlinear system is proposed. All the previous adaptive neural (or fuzzy) controllers are based on the backstepping scheme where the universal approximators are employed in every design steps. These schemes involve virtual controls and their time derivatives that make the stability analysis and implementation of the controller very complex. This fact is called 'explosion of complexty ' since the complexity grows exponentially as the system dynamic order increases. The proposed adaptive neural control scheme adopt the backstepping design procedure only for determining ideal control law and employ only one neural network to approximate the finally selected ideal controller, which makes the controller design procedure and stability analysis considerably simple compared to the previously proposed controllers. It is shown that all the time-varing signals containing tracking error are stable in the Lyapunov viewpoint.

상태 관측기를 이용한 미지의 비선형 시스템의 직접 적응 퍼지 제어 (Direct Adaptive Fuzzy Control with State Observer for Unknown Nonlinear Systems)

  • 김형중;황영호;김응석;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2190-2192
    • /
    • 2003
  • In this paper, a state observer based direct adaptive fuzzy controller for unknown nonlinear dynamical system is presented. The adaptive parameters of the direct adaptive fuzzy controller can be tuned by using a projection algorithm on-line based on the Lyapunov synthesis approach. A maximum control is used to guarantee the robustness of system. A stability analysis of the overall adaptive scheme is discussed based on the sense of Lyapunov. The inverted pendulum simulation example shows that proposed control algorithm can be used for the tracking problem of nonlinear system.

  • PDF

대각귀환 신경망을 이용한 비선형 적응 제어 (Adaptive Control of the Nonlinear Systems Using Diagonal Recurrent Neural Networks)

  • 류동완;이영석;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.939-942
    • /
    • 1996
  • This paper presents a stable learning algorithm for diagonal recurrent neural network(DRNN). DRNN is applied to a problem of controlling nonlinear dynamical systems. A architecture of DRNN is a modified model of the Recurrent Neural Network(RNN) with one hidden layer, and the hidden layer is comprised of self-recurrent neurons. DRNN has considerably fewer weights than RNN. Since there is no interlinks amongs in the hidden layer. DRNN is dynamic mapping and is better suited for dynamical systems than static forward neural network. To guarantee convergence and for faster learning, an adaptive learning rate is developed by using Lyapunov function. The ability and effectiveness of identifying and controlling a nonlinear dynamic system using the proposed algorithm is demonstrated by computer simulation.

  • PDF