• Title/Summary/Keyword: 비선형 유한요소해석 프로그램

Search Result 271, Processing Time 0.028 seconds

Explicit Nonlinear Finite Element Analysis for Flexure Behavior of FRP-Concrete Composite Beam (FRP-콘크리트 합성보의 휨거동에 관한 외연적 비선형 유한요소해석 연구)

  • Yoo, Seung Woon;Kang, Ga Ram
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.269-276
    • /
    • 2017
  • In order to study ultimate flexure behavior of FRP-concrete composite structures which can replace reinforced concrete structures, ABAQUS, a general purpose analysis program, was utilized for numerical nonlinear analysis of structural performance and behavior characteristics of FRP-concrete composite beams. Explicit nonlinear finite element analysis was conducted and the numerical results were compared with previous experiments. Concrete damaged plasticity model was adopted as material properties of concrete and Euro code was used as compressive stress state. Nonlinear analysis was performed for four different types of FRP-concrete composite beams, and ultimate load and cracking pattern was compared and analyzed. The model suggested in this research was able to simulate ultimate load and cracking pattern properly, it is expected to be utilized in study of precise structural and behavioral characteristics of various FRP-concrete composite structures.

Analytical method of flexural ductility of press-braked steel plate members (강재 절곡 후판부재의 휨연성 해석 방안)

  • Choi, Byung-Ho;Choi, Su-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.631-633
    • /
    • 2012
  • 본 논문은 구조용 후판 강재로 절곡되었을 때, 절곡부재의 구조연성 변화에 대한 해석 방안과 이에 따른 해석적 평가 사례를 제시하고 있다. 절곡 방법에 의한 제작과정에서 재료는 변형경화 현상이 발생한다. 이로 인해 구조연성 저하가 불가피하기 때문에 절곡부재의 휨연성 검토가 필요하다. 해석 방안은 유한요소해석 프로그램인 ABAQUS를 이용하였다. Lanczos 알고리즘을 적용한 고유치해석과 재료 비탄성-기하비선형을 고려한 비선형 해석을 하였다. 비선형해석 절곡에 의한 재료특성을 고려하였다. 극한 하중과 파괴모드를 평가하기 위해 Newton-Raphson method, modified Riks method를 적용한 단계별 하중재하 해석을 실시하였다. 본 연구를 통해 휨연성을 평가하는데 활용 될 것으로 판단된다.

  • PDF

Nonlinear Finite Element Analysis of Circular Hollow Reinforced Concrete Columns Based on Design Variables (설계변수에 따른 중공원형 철근콘크리트 교각의 비선형 유한요소해석)

  • Cheon, Ju-Hyun;Lee, Seung-Jin;Lee, Byung-Ju;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.35-42
    • /
    • 2011
  • The seismic design of solid reinforced concrete bridge columns has been committed to, based on accumulated research and design specifications. The rational confinement model and seismic performance evaluation, however, are insufficient because of the lack of domestic and foreign design specifications about the experimental and analytical difficulties in the case of circular hollow reinforced concrete columns. In this paper, the seismic behavior of circular hollow reinforced concrete columns and its dependence on design variables are understood and explained. These research results can be used to derive the rational and economical design specifications for circular hollow sectional columns based on the result from the nonlinear analysis program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology).

Analysis and Design of Shoes Using Non-Linear Finite Element Method (비선형 유한요소법을 이용한 신발 해석 및 설계)

  • Kim, B.S.;Moon, B.Y.
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.195-205
    • /
    • 2003
  • This paper presents an analytic method and a design technique for golf shoes with air-cycled pump in the midsole. The golf shoes are modeled using the finite element method for better design by considering the configuration of the midsole and the outsole, which compose the golf shoes. Also the optimum size and shape of air-cycled pump in the midsole is examined. The values or standard human pressure for boundary conditions are adopted for the FEA(Finite Element Analysis). The unknown constants of the strain energy function of Ogden type are observed in accordance with the axial tension test. By the commercial FEM software for nonlinear analysis, MARC V7.3, the strains and the values of volume change for the midsole and the outsole are obtained, respectively. It can be concluded that results obtained by FEM in the midsole and the outsole are different depending on the characteristic of elastomer The results reported herein provide better understanding of analyzing the golf shoes. Moreover, it is believed that those properties of the results can be utilized in the shoes industry to develop the effective design method.

Nonlinear Analysis of Precast Concrete Wall Structures (프리캐스트 콘크리트 판구조의 비선형 해석)

  • 서수연;이원호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.189-196
    • /
    • 2000
  • The objective of this paper is to propose an analysis technique to predict the behavior of PC wall structures subjected to cyclic load. While PC wall panel is idealized by finite elements, the joints at which PC walls are connected each other are idealized by nonlinear spring elements. Axial and shear spring elements are developed for simulating shear, compression and tension behaviors of joints. The strength and stiffness of each spring elements we presented from the previous research results and incorporated into the computer program of DRAIN-2DX. The proposed analysis technique is evaluated by analyzing specimens previously tested and comparing with those. On the strength, stiffness, energy dissipation and lateral drift, analytical results show good agreements with test results. This means the proposed technique is effective to predict the response of the PC wall structures.

  • PDF

Nonlinear FEM analysis of Cable-stayed PSC Bridges Considering Time-dependent Behavior (시간 의존적 거동을 고려한 PSC 사장교의 비선형 유한요소해석)

  • Cho, Hwak-Shin;Seong, Dae-Jeong;Im, Duk-Ki;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.177-184
    • /
    • 2011
  • In this paper the nonlinear analysis that include time-dependent characteristics of materials and geometric nonlinearity of elements for the cable-stayed PSC bridges is presented. Analysis models for finite element method were developed based on the flexibility based fiber beam-column model originally proposed by Spacone et al.(1996). The developed analysis model implemented in general purpose object-oriented finite element analysis program named HFC(Cho 2009). The performance of proposed analysis models is evaluated by comparing with the former results of the design data. The deflection of time dependent analysis is larger than time ignored analysis on construction sequences, and the bridge is destructed at a smaller deflection than the time ignored analysis on failure behavior.

The Stochastic Finite Element Analysis and Reliability Analysis of the Cable Stayed Bridge Considered to Correlation of the Random Variable (확률변수의 상관성을 고려한 사장교의 확률유한요소해석 및 신뢰성해석)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.21-33
    • /
    • 2006
  • The reliability analysis can be conducted more effectively by formulating the stochastic finite element method suitable for the reliability theory about the cable stayed bridge. After conducting the initial equilibrium analysis of the cable stayed bridge, the program which can conduct the linear and nonlinear stochastic finite element analysis using the perturbation method and the reliability analysis considered to the correlation of the random variable is developed. Using the results of this program about the cable stayed bridge, the characteristic of the node displacement, element force and cable tension according to the correlation of the random variable is investigated quantitatively. Also the reliability index and the failure probability are examined by the compounding the correlation of the random variable.

Application of Mechanical Crack Model to Numerical Study of Rock Mass Behavior (암석거동의 수치해석적 연구를 위한 균열모형의 적용)

  • Park, Do-hyun;Jeon, Seok-won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.72-85
    • /
    • 2000
  • Rock is a very complex and heterogeneous material, containing structural flaws due to geologic generation process. Because of those structural flaws, deformation and failure of rock when subjected to differential compressive stresses is non-linear. To simulate the non-linear behavior of rock, mechanical crack models, that is, sliding and shear crack models have been used in several studies. In those studies, non-linear stress-strain curves and various behaviors of rock including the changes of effective elastic moduli ($E_1$, $E_2$, ${\nu}_1$, ${\nu}_2$, $G_2$) due to crack growth were simulated (Kemeny, 1993; Jeon, 1996, 1998). Most of the studies have mainly focused on the verification of the mechanical crack model with relatively less attempt to apply it to practical purposes such as numerical analysis for underground and/or slope design. In this study, the validity of mechanical crack model was checked out by simulating the non-linear behavior of rock and consequently it was applied to a practical numerical analysis, finite element analysis commonly used.

  • PDF

Postbuckling of Composite Cylinders under External Hydrostatic Pressure (외부 수압을 받는 복합재 원통의 후좌굴 연구)

  • Son, Hee-Jin;Choi, Jin-Ho;Cho, Jong-Rae;Cho, Sang-Rae;Kweon, Jin-Hwe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.196-203
    • /
    • 2007
  • The postbuckling behavior and failure of composite cylinders subjected to external hydrostatic pressure are investigated by a finite element method and test. A nonlinear finite element program, ACOS, is used for the postbuckling progressive failure analysis of composite cylinders. A total of 5 carbon/epoxy composite cylinders were fabricated and tested to verify the finite element results. For comparison, analyses by MSC/NASTRAN and MSC/MARC are additionally conducted. Among the softwares, the finite element program, ACOS, predicts the buckling loads the best with about 11 to 26% deviation from experimental results except for one specimen. While the finite element analysis shows global buckling modes with 4 waves in hoop direction, in the experiments the local buckling appears first and results in the final failure without global buckling.

Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: I. Experiments and Analyses (원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : I. 실험 및 해석)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin;Kang, Hyeong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.339-349
    • /
    • 2006
  • The purpose of this study is to investigate the seismic behavior of circular reinforced concrete bridge piers with confinement steel and to provide the data for developing improved seismic design criteria. Fourteen circular reinforced concrete bridge piers were tested under a constant axial load and a cyclically reversed horizontal load. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. In the companion paper, the proposed numerical method for the seismic performance assessment of circular reinforced concrete bridge piers with confinement steel is verified by comparison with experimental results.