DOI QR코드

DOI QR Code

Explicit Nonlinear Finite Element Analysis for Flexure Behavior of FRP-Concrete Composite Beam

FRP-콘크리트 합성보의 휨거동에 관한 외연적 비선형 유한요소해석 연구

  • 유승운 (가톨릭관동대학교 토목공학과) ;
  • 강가람 (가톨릭관동대학교 토목공학과 대학원)
  • Received : 2016.09.23
  • Accepted : 2017.01.17
  • Published : 2017.04.01

Abstract

In order to study ultimate flexure behavior of FRP-concrete composite structures which can replace reinforced concrete structures, ABAQUS, a general purpose analysis program, was utilized for numerical nonlinear analysis of structural performance and behavior characteristics of FRP-concrete composite beams. Explicit nonlinear finite element analysis was conducted and the numerical results were compared with previous experiments. Concrete damaged plasticity model was adopted as material properties of concrete and Euro code was used as compressive stress state. Nonlinear analysis was performed for four different types of FRP-concrete composite beams, and ultimate load and cracking pattern was compared and analyzed. The model suggested in this research was able to simulate ultimate load and cracking pattern properly, it is expected to be utilized in study of precise structural and behavioral characteristics of various FRP-concrete composite structures.

본 연구는 철근콘크리트구조를 대신할 FRP-콘크리트 합성구조의 극한 휨 거동에 관한 것으로, FRP-콘크리트 합성보의 구조적 성능 및 거동 특성을 수치 해석적으로 규명하고자 범용 해석프로그램인 ABAQUS를 사용하여 외연적 비선형 유한요소해석을 실시하고 기 수행한 실험과 비교분석하였다. 콘크리트의 재료모델은 콘크리트 손상 소성모델을 사용하였으며, 콘크리트 압축응력은 유로코드를 사용하였다. 4가지 종류의 FRP-콘크리트 합성보에 대해 비선형해석을 수행하고 극한하중 및 균열 형태를 비교 분석하였다. 본 모델의 경우 극한 하중 및 균열 형태를 잘 모사할 수 있었기 때문에 앞으로 다양한 FRP-콘크리트 합성구조의 정밀한 구조거동 해석 및 분석에 사용 가능할 것으로 판단된다.

Keywords

References

  1. Bank, L. C. (2006). Composites for construction: Structural design with FRP materials, John Wiely & Sons, NJ, USA.
  2. Bank, L. C., Oliva, M. G., Bae, H. U., Barker, J. W. and Yoo, S. W. (2007). "Pultruded FRP plank as formwork and reinforcement for concrete members." Advances in Structural Engineering, Vol. 10, No. 5, pp. 525-536. https://doi.org/10.1260/136943307782417681
  3. Bank, L. C., Oliva, M. G., Bae, H. U. and Bindrich, B. V. (2010). "Hybrid concrete and pultruded-plank slabs for hightway and pedestrian bridges." Construction and Building Materials, Vol. 24, pp. 552-558. https://doi.org/10.1016/j.conbuildmat.2009.10.002
  4. CEB-FIP model code (1993). Thomas Telford.
  5. Cheng, L., Zhao, L. M., Karbhari, V., Hegemier, G.-a. and Seible, F. (2005). "Assessment of a steel-free fiber reinforced polymercomposite modular bridge system." Journal of Structural Engineering, Vol. 131, No. 3, pp. 498-506. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(498)
  6. Cho, K. H., Park, S. Y., Cho, J. R. and Kim, B. S. (2007). "Structural systems and behavioral characteristics of an innovative FRPconcrete composite deck." Journal of Korean Society of Civil Engineers, KSCE, Vol. 27, No. 3, pp. 347-357 (in Korean).
  7. Dassault Systems (2014). Abaqus Analysis User's Manual Version 6.14, Dassault Systems.
  8. Erki, M. (1999). "Fiber-reinforced polymers for structural engineering in Canada." Structural Eng, International, Vol. 9, No. 4, pp. 278-280. https://doi.org/10.2749/101686699780481691
  9. Eurocode 2 (2004). Design of Concrete Structure, Belgium.
  10. Genikomsou, A. S. and Polak, M. A. (2015). "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in Abaqus." Engineering Structures, Vol. 98, pp. 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016
  11. Kim, K. W., Jeong, H. S. and Beom, H. G. (2003). "Transient dynamic analysis of a patterned tire rolling over a cleat with and explicit finite element program." Transactions of the Korean Society of Automotive Engineers, Vol. 11, No. 6, pp. 164-170 (in Korean).
  12. Kmiecik, P. and Kaminski, M. (2011). "Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration." Archives of Civil and Mechanical Engineering, Vol. 11, No. 3, pp. 623-636. https://doi.org/10.1016/S1644-9665(12)60105-8
  13. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989). "A plasticdamage model for concrete." International Journal of Solids and Structures, Vol. 25, No. 3, pp. 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  14. Tang, B., Podolny, W. and Hooks, J. (1999). "A good start for fiberreinforced polymer composite material bridges." American Society of Civil Engineers, Materials Engineering Congress, pp.324-331.
  15. Um, C. H. and Yoo, S. W. (2015). "An experimental study for flexural failure behavior of composite beam with cast-in-place high strength concrete and GFRP plank using as a permanent formwork and tensile reinforcement." Joural of the Korean Society of Civil Engineers, Vol. 35, No. 5, pp. 1015-1025 (in Korean). https://doi.org/10.12652/Ksce.2015.35.5.1015
  16. Yoo, S. W., Bae, H. U., Oliva, M. and Bank, L. (2007). "Experimental study of concrete beam with FRP plank as formwork and reinforcement." Journal of the Korea Concrete Institute, Vol. 19, No. 1, pp. 67-74 (in Korean). https://doi.org/10.4334/JKCI.2007.19.1.067
  17. Yoo, S. W. and Kang, G. R. (2017). "Influence of various parameter for nonlinear finite element analysis of FRP-concrete composite beam using concrete damaged plasticity model." Journal of The Korea Academia -Industrial Cooperation Society, Vol. 18, No. 2, pp. 697-703 (in Korean). https://doi.org/10.5762/KAIS.2017.18.2.697