• Title/Summary/Keyword: 비선형 연성

Search Result 255, Processing Time 0.025 seconds

Dynamic Instability of Strength-Limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 동적 불안정)

  • Han, Sang-Whan;Kim, Jong-Bo;Bae, Mun-Su;Moon, Ki-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.23-29
    • /
    • 2008
  • This study investigates the dynamic instability of strength-limited bilinear single degree of freedom (SDF) systems under seismic excitation. The strength-limited bilinear hysteretic model best replicates the hysteretic behavior of the steel moment resisting frames. To estimate the dynamic instability of SDF systems, the collapse strength ratio is used, which is the yield-strength reduction factor when collapse occurs. Statistical studies are carried out to estimate median collapse strength ratios and those dispersions of strength-limited bilinear SDF systems with given natural periods, hardening stiffness ratios, post-capping stiffness ratios, ductility and damping ratios ranging from 2 to 20% subjected to 240 earthquake ground motions recorded on stiff soil sites. Equations to calculate median and standard deviation of collapse strength ratios in strength-limited bilinear SDF systems are obtained through nonlinear regression analysis. By using the proposed equations, this study estimated the probabilistic distribution of collapse strength ratios, and compared this with the exact values from which the accuracy of the proposed equations was verified.

Theoretical Assessment of Reinforced Steel Fibrous Concrete Beam Equivalent to Conventional RC Beam (일반 RC보와 동등한 강섬유 보강 철근콘크리트 보의 이론적 산정)

  • 이차돈;윤여천
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.195-206
    • /
    • 1997
  • 비선형 layered 유한요소법과 비선형 프로그래밍 기법에 의하여 주어진 기존의 철근콘크리트 보의 휨강도 및 연성을 근사하게 나타낼 수 있는 강섬유고강 철근콘크리트 보(Reinforced Steel Fibrous Concrete Beam : RSFC Beam)의 인장 및 압축철근량, 강섬유의 혼입률 등을 산정하였다. 개발된 모델을 이용하여 콘트리트의 압축강도 및 철근비가 서로 다른 일반 철근콘크리트 보에 있어서 강섬유보강 콘크리트를 사용할 경우, 기존 철근을대체하는 강섬유의 량과 또한 이로 인한 인장 \ulcorner 압축 철근량의 변화량을 조사하였다. 기존 문헌에 나타난 강섬유보강 콘크리트보의 전간강도식을 이용하여 일반 철근콘크리트보와 비교하여 강섬유보강 철근콘크리트 보에서 증가될 수 있는 스터럽의 간격을 산정하였다.

A study on the dynamic vibration absorber having non-linear spring and linear damper (非線型 스프링과 線型감쇠를 가지는 動吸振器에 관한 硏究)

  • 김광식;안찬우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.473-478
    • /
    • 1987
  • In this paper the optimum values of natural frequency ratio and damping ratio for damped systems were studied by numerical analysis. The relation between the amplitude ratio and frequency ratio obtained for the non-linear dynamic vibration absorber was found and it was compared with that of linear system. The results shows that the optimum frequency ratio decreases and the optimum damping ratio increases when the mass ratio of the damped system increases. The resonance frequency ratio and amplitude ratio decrease as mass ratio increases for the non-linear spring system.

Response scaling factors for nonlinear response analysis of MDOF system (다층건물의 비선형 반응해석을 위한 반응수정계수)

  • 한상환;이리형
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.103-111
    • /
    • 1995
  • Evaluating nonlinear response of a MDOF system under dynamic stochastic loads such as seismic excitation usually requires excessive computational efforts. To alleviate this computational difficulty, an approximation is developed in which the MDOF inelastic system is replaced by a simple nonlinear equivalent system(ENS).Me ENS retains the most important properties of the original system such as dynamic characteristics of the first two modes and the global yielding behavior of the MDOF system. The system response is described by the maximum global(building) and local(interstory) drifts. The equivalency is achieved by two response scaling factors, a global response scaling factor R/sub G/, and a local response scaling factor R/sub L/, applied to the responses of the ENS to match those of the original MDOF system. These response scaling factors are obtained as functions of ductility and mass participation factors of the first two modes of structures by extensive regression analyses based on results of responses of the MDOF system and the ENS to actual ground accelerations recorded in past earthquakes. To develop the ENS with two response scaling factors, Special Moment Resisting Steel Frames are considered. Then, these response scaling factors are applied to the response of ENS to obtain the nonlinear response of MDOF system.

  • PDF

Decoupling of Thrust Force and Levitation Force of Transverse Flux Linear Induction Motor by the Active Compensation of Magnetic force across the Air-Gap (공극력의 능동적 보상을 통한 횡자속 선형 유도 구동기의 추력과 부상력의 비연성화)

  • 정광석;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.91-98
    • /
    • 2004
  • TFLIM(Transverse Flux Linear Induction Motor), making its closed magnetic path with the direction of the traveling field orthogonal, had been developed to decrease an edge effect of the general induction motor. To control the levitation force and the thrust force on the secondary part of TFLIM independently, the various methodologies have been presented. When we try to achieve the independent control using only the multi-phase inputs assigned in the stator coils as an approach, in which condition we can minimize the coupling effect between two forces\ulcorner In this paper, we show the qualitative influence of a slip frequency, an ac magnitude, a dc offset superposed in the ac power, and a major parameter of TFLIM on the couple through the computer simulation. And to realize the independent motions between levitation and thrust motion without any auxiliary means fur isolation of the secondary part of TFLIM, the decouple compensator is suggested, including the experimental results.

Nonlinear Analysis of Internally Confined Hollow CFT Columns (내부 구속 중공 CFT 기둥의 비선형 해석)

  • Han, Taek-Hee;Won, Deok-Hee;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.439-454
    • /
    • 2011
  • A nonlinear analysis model for internally confined hollow concrete-filled tube (ICH CFT) columns was suggested and was verified by the test results obtained by the previous researchers. The suggested model considered the confining effect and nonlinearity of concrete. The verified results showed that the suggested model was reasonable and reliable for predicting the behavior of an ICH CFT column. Additionally, a simple parametric study was carried out. The strength of concrete, the hollow ratio of a column, and the thickness of an inner tube were selected as parameters affecting the behavior of an ICH CFT column. The analysis results showed that the concrete strength and the thickness of the inner tube affect the axial strength and moment capacity of the column while the hollow ratio affects only its axial strength.

Reliability of Nonlinear Direct Spectrum Method with Mixed Building Structures (복합구조물에 대한 비선형 직접스펙트럼법의 신뢰성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.75-84
    • /
    • 2003
  • Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. Seismic evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. The nonlinear response history analysis(NRHA) among various nonlinear analysis methods is the most accurate to compute seismic performance of structures, but it is time-consuming and necessitate more efforts. The nonlinear approximate methods, which is more practical and reliable tools for predicting seismic behavior of structures, are extensively studied. Among them, the capacity spectrum method(CSM) is conceptually simple, but the iterative procedure is time-consuming and may sometimes lead to no solution or multiple solutions. This paper considers a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of mixed building structures without iterative computations, given dynamic property T from stiffness skeleton curve and nonlinear pseudo acceleration $A_{y}$/g and/or ductility ratio $\mu$ from response spectrum. The nonlinear response history analysis has been performed and analyzed with various earthquakes for estimation of reliability and practicality of NDSM with mixed building structures.

Analytical Study on Flexural Behavior of Alkali-Activated Slag-Based Ultra-High-Ductile Composite (알칼리활성 슬래그 기반 초고연성 복합재료의 휨거동 해석)

  • Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.158-165
    • /
    • 2019
  • The purpose of this study is to investigate analytically the flexural behavior of beam reinforced by an alkali-activated slag-based fiber-reinforced composite. The materials and mixture proportion were selected to manufacture an alkali-activated slag-based fiber-reinforced composite with high tensile strain capacity over 7% and compressive strength and tension tests were performed. The composite showed a compressive strength of 32.7MPa, a tensile strength of 8.43MPa, and a tensile strain capacity of 7.52%. In order to analyze the flexural behavior of beams reinforced by ultra-high-ductile composite, nonlinear sectional analysis was peformed for four types of beams. Analysis showed that the flexural strength of beam reinforced partially by ultra-high-ductile composite increased by 8.0%, and the flexural strength of beam reinforced fully by ultra-high-ductile composite increased by 24.7%. It was found that the main reason of low improvement in flexural strength is the low tensile strain at the bottom of beam. The tensile strain at bottom corresponding to the flexural strength was 1.38% which was 18.4% of tensile strain capacity of the composite.

Nonlinear Vibration Phenomenon for the Slender Rectangular Cantilever Beam (얇은 직사각형 외팔보의 비선형 진동현상)

  • Park, Chul-Hui;Cho, Chong-Du;Piao, Chang-Hao
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1314-1321
    • /
    • 2004
  • The non-linear responses of a slender rectangular cantilever beam subjected to lateral harmonic base-excitation are investigated by the 2-channel FFT analyzer. Both linear and nonlinear behaviors of the cantilever beam are compared with each other. Bending mode, torsional mode, and transverse mode are coupled in such a way that the energy transfer between them are observed. Especially, superharmonic, subharmonic, and chaotic motions which result from the unstable inertia terms in the transverse mode are analyzed by the FFT analyzer The aim is to give the explanations of the route to chaos, i.e., harmonic motion \longrightarrow superharmonic motion \longrightarrow subharmonic motion \longrightarrow chaos.

Nonlinear Analysis Method for Reinforced Concrete Members Using Fiber Element (화이버요소를 이용한 철근콘크리트부재의 비선형 해석기법)

  • Park, Bong-Sik;Cho, Jae-Yeol;Park, Jong-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.201-202
    • /
    • 2009
  • The objective of this paper is to develop nonlinear analysis method using fiber element. The program is based on flexibility method and developed for analyzing bernoulli's beam element. Using fiber element, three dimensional effects, such as concrete confinement can be incorporated into the uniaxial stress-strain relationship. In addition, most appropriate modeling method is used for application of bond-slip and shear effects.

  • PDF