• 제목/요약/키워드: 비선형 시계열 패널 자료

검색결과 4건 처리시간 0.015초

일차 비선형 시계열 패널자료의 확률계수 동질성 검정 (Homogeneity Test of Random Coefficient for the First Order Nonlinear Time Series Panel Data)

  • 김인규;황선영;이성덕
    • 응용통계연구
    • /
    • 제13권1호
    • /
    • pp.97-104
    • /
    • 2000
  • 본 논문은 m개의 독립적인 일차 비선형 시계열로 구성된 패널자료의 동질성 검정에 대한 연구로서 먼저 일반적인 일차 비선형 시계열의 정상성 조건을 유도하고 이어서 동질성 검정법을 제시하고 연관된 극한분포를 규명하였다. 또한 모의실험을 하여 제안된 검정법의 모의검정력을 구하였다.

  • PDF

중선형 모형을 이용한 비선형 시계열 패널자료의 동질성검정에 대한 연구 (A Study on the Test of Homogeneity for Nonlinear Time Series Panel Data Using Bilinear Models)

  • 김인규
    • 디지털융복합연구
    • /
    • 제12권7호
    • /
    • pp.261-266
    • /
    • 2014
  • 시계열 모형에서 모수의 수가 많으면 모수추정에 따르는 오차가 커지게 되므로 예측을 하는데 많은 어려움이 있다. 만약 여러개의 시계열 자료들이 동일한 모형에서부터 얻어졌다고 하는 동질성 가설이 채택되면 모수축약을 이룰 수 있고, 더 좋은 예측값을 얻을 수 있다. 비선형 시계열 패널 자료는 각각의 시계열마다 모수들이 있기 때문에 매우 많은 모수가 존재하게되고, 모수의 수가 많으면 모수추정에 따르는 오차가 커지게 되어 예측의 정확도가 떨어지게 된다. 패널내에 존재하는 독립적인 여러 시계열들의 동질성이 만족되면 시계열을 종합하여 모수를 추정하고 검정할 수 있다. m개의 독립적인 비선형 시계열 패널 자료의 동질성 검정을 알아보기 위하여 모형을 설정하고 이 모형에 대한 정상성 조건을 구하였고, 동질성 검정통계량을 유도했으며, 구한 검정 통계량의 극한분포가 ${\chi}^2$ 분포를 따르는 것을 보였다. 실증분석에 있어서는 비선형 시계열 자료중 중선형 시계열 모형의 동질성 검정을 하고, 실제 우리나라 주식자료를 2개의 집단으로 나누어 비선형 시계열 패널 자료의 동질성 검정에 대한 분석을 하였다.

신경망을 이용한 시계열 패널자료의 예측 (Prediction for Time Series Panel Data using Neural Network)

  • 김인규
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제45차 동계학술발표논문집 20권1호
    • /
    • pp.263-264
    • /
    • 2012
  • 본 논문은 여러 개의 독립적인 시계열로 구성된 시계열 패널 자료를 이용하여 비선형 모형인 GRCA모형과 신경망을 이용하여 예측값을 구하여 서로 비교 분석하고자 한다. 먼저 GRCA모형에 대하여 연구하고 신경망의 구조와 예측값을 구하기 위한 여러 가지 변환함수를 유도한다. 단기 예측에서는 신경망 방법의 예측값이 더 좋았고, 장기예측에서는 비선형모형을 이용한 예측값이 더 좋은 것으로 나타났다.

  • PDF

상대오차예측을 이용한 자동차 보험의 손해액 예측: 패널자료를 이용한 연구 (Predicting claim size in the auto insurance with relative error: a panel data approach)

  • 박흥선
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.697-710
    • /
    • 2021
  • 상대오차를 이용한 예측법은 상대오차(혹은 퍼센트오차)가 중요시되는 분야, 특히 계량경제학이나 소프트웨어 엔지니어링, 또는 정부기관 공식통계 부분에서 기존 예측방법 외에 선호되는 예측방법이다. 그 동안 상대오차를 이용한 예측법은 선형 혹은 비선형 회귀분석 뿐 아니라, 커널회귀를 이용한 비모수 회귀모형, 그리고 정상시계열분석에 이르기까지 그 범위가 확장되어 왔다. 그러나, 지금까지의 분석은 고정효과(fixed effect)만을 고려한 것이어서 임의효과(random effect)에 관한 상대오차 예측법에 대한 확장이 필요하였다. 본 논문의 목적은 상대오차예측법을 일반화선형혼합모형(GLMM)에 속한 감마회귀(gamma regression), 로그정규회귀(lognormal regression), 그리고 역가우스회귀(inverse gaussian regression)의 패널자료(panel data)에 적용시키는데 있다. 이를 위해 실제 자동차 보험회사의 손해액 자료를 사용하였고, 최량예측량과 최량상대오차예측량을 각각 적용-비교해 보았다.