• Title/Summary/Keyword: 비선형 비례적분제어

Search Result 30, Processing Time 0.025 seconds

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

Design of Nonlinear PI Controller for velocity Control of IM (유도전동기 속도제어를 위한 비선형 비례적분 제어기 설계)

  • Oh, Tae-Seok;Choi, Joon-Bae;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.47-49
    • /
    • 2005
  • This paper presents a robust speed control method of induction motors(IM) using a Non-linear PI controller(NPI), NPI is high gain controller in region of small error, and low gain controller in region of large error. so in steady state, system will be robust against variation of load torque. The simulation and experiment results confirm the validity of proposed control scheme.

  • PDF

Control of Pressure and Thrust for a Variable Thrust Solid Propulsion System Using Linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho;Kim, Dae-Seung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For the pressure control within the chamber, we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using the feedback linearization technique. Also we derive the equation of the thrust for an under-expanded one-dimensional nozzle and then design a proportional-intergral controller after linearizing the thrust model for an operating point. Finally, we demonstrate the performance of the controller through a numerical simulation.

Nonlinear Model-Based Robust Control of a Nuclear Reactor Using Adaptive PIF Gains and Variable Structure Controller (적응 PIF Gain 및 가변구조 제어기를 사용한 비선형 모델에 의한 원자로의 Robust Control)

  • Park, Moon-Ghu;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.110-124
    • /
    • 1993
  • A Nonlinear model-based Hybrid Controller (NHC) is developed which consists of the adaptive proportional-integral-feedforward (PIF) gains and variable structure controller. The controller has the robustness against modeling uncertainty and is applied to the trajectory tracking control of single-input, single-output nonlinear systems. The essence of the scheme is to divide the control into four different terms. Namely, the adaptive P-I-F gains and variable structure controller are used to accomplish the specific control actions by each terms. The robustness of the controller is guaranteed by the feedback of estimated uncertainty and the performance specification given by the adaptation of PIF gains using the second method of Lyapunov. The variable structure controller is incorporated to regulate the initial peak of the tracking error during the parameter adaptation is not settled yet. The newly developed NHC method is applied to the power tracking control of a nuclear reactor and the simulation results show great improvement in tracking performance compared with the conventional model-based control methods.

  • PDF

Nonlinear Pitch and Torque Controller Design for Wind Turbine Generator Using Lyapunov Function (리아프노프 함수를 이용한 풍력 발전기 비선형 피치 및 토크 제어기 설계)

  • Kim, Guk-Sun;No, Tae-Soo;Jeon, Gyeong-Eon;Kim, Ji-Yon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1147-1154
    • /
    • 2012
  • In this study, a method for designing blade pitch and generator torque controllers for a wind turbine generator is presented. This method consists of two steps. First, the Lyapunov stability theory is used to obtain nonlinear control laws that can regulate the rotor speed and the power output at all operating ranges. The blade pitch controller is chosen such that it always decreases a positive definite function that represents the error in rotor speed control. Similarly, the generator torque controller always decreases a positive definite function that reflects the error in power output control. Then, the simulation-based optimization technique is used to tune the design parameters. The controller design procedure and simulation results are presented using the widely adopted two-mass model of the wind turbine.

Control of nonlinear systems with mismatched uncertainties using an output feedback (출력피드백에 의한 비매칭 불확실성이 있는 비선형계의 제어)

  • Park, Chang-Yong;Sung, Yul-Wan;Kwon, Oh-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1188-1194
    • /
    • 1997
  • In this paper, we design output feedback nonlinear dynamic control law by using state feedback nonlinear dynamic compensator and PI observer and show that the controller can stabilize globally and asymptotically a class of nonlinear systems with mismatched uncertainties. We also show that it is possible for a nonlinear system to use the output of PI observer in place of state variables in case that the nonlinear dynamic control law is used, similarly as in the linear system. The effectiveness of the proposed control law is demonstrated by a numerical simulation.

Control of Nonlinear Systems with Mismatched Uncertainties Using an Output Feedback (출력피드백에 의한 비매칭 불확실성이 있는 비선형계의 제어)

  • Park, Chang Yong;Seong, Yeol Wan;Gwon, O Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1184-1184
    • /
    • 1997
  • In this paper, we design output feedback nonlinear dynamic control law by using state feedback nonlinear dynamic compensator and PI observer and show that the controller can stabilized globally and asymptotically a class of nonlinear systems with mismatched uncertainties. We also show that it is possible for a nonlinear system to use the output of PI observer in place of state variables in case that the nonlinear dynamic control law is used, similarly as in the linear system. The effectiveness of the proposed control law is demonstrated by a numerical simulation.

Speed Control of a Diesel Engine Generator by a Electric Governor (전기식 조속기를 이용한 디젤 엔진 발전기의 속도 제어)

  • Lee, Seung-Hwan;Lee, Joon-Hwan;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.452-454
    • /
    • 2008
  • 본 논문에서는 실험적으로 구한 엔진 토크 참조 표를 이용하여 엔진의 비선형 모델을 구하고 이를 각각의 운전 점에 대해 선형화한 엔진 모델을 제시하였다. 이러한 선형화된 엔진 모델을 이용하여, 전기식 조속기를 사용한 디젤 엔진의 속도 제어에 있어 발생하는 안정성 문제를 해석하였다. 제시한 디젤 엔진 모델을 이용하여 속도제어기의 비례, 적분 미분 이득을 설정하고 이 값을 바탕으로 모의실험 및 실험을 통하여 제시한 모델의 타당성을 검증 하였다.

  • PDF

Continuous-Time Controller Design using Identification of Feedback System in Frequency Domain (주파수역 피드백시스템인식을 이용한 연속시간 제어기 설계)

  • Yang, Ho-Suk;Jung, Yu-Chul;Lee, Gun-Bok
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.664-669
    • /
    • 2001
  • Continuous-time controller design is proposed using feedback system identification in frequency domain. System stability imposed by a new controller is checked in the function of a conventional closed-loop system, instead of a poorly modeled plant due to non-linearity and disturbance as well as unstable components, etc. The stability of the system is evaluated in view of Nyquist stability. All the equations are formulated in the framework of the discrete-time system. Simulation results are shown on the plant with input saturation and DC disturbance.

  • PDF