• Title/Summary/Keyword: 비선형동역학

Search Result 168, Processing Time 0.029 seconds

Formulations of Linear and Nonlinear Finite Element for Dynamic Flexible Beam (유연보의 동역학 해석에 대한 선형 및 비선형 유한요소 정식화)

  • Yun Seong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.113-121
    • /
    • 2006
  • This paper established the dynamic model of a flexible Timoshenko beam capable of geometrical nonlinearities subject to large overall motions by using the finite element method. Equations of motion are derived by using Hamilton principle and are formulated in terms of finite elements using CO elements in which the nonlinear constraint equations are adjoined to the system using Lagrange multipliers. In the final formulation are presented Coriolis and Gyroscopic forces as well as linear and nonlinear stiffnesses effects for the forthcoming numerical computation.

Calculation of the Dynamic Contact Force between Shipbuilding Block and Wire Rope of a Goliath Crane for Optimal Lug Arrangement (선체 블록 러그 최적 배치를 위한 골리앗 크레인의 와이어로프와 블록 간의 동적 접촉력 계산)

  • Ku, Nam-Kug;Jo, A-Ra;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.714-717
    • /
    • 2011
  • 본 논문에서는 선체 블록의 운반 작업 중 발생하는 동적 하중 및 골리앗 크레인의 와이어로프와 선체블록 간의 동적 접촉력을 고려한 최적 러그 배치 시스템을 설계하고, 다물체계 동역학 커널과 외력 계산커널을 개발하였다. 다물체계 동역학 커널은 recursive formulation을 이용하여 운동 방정식을 구성하고, 외력 계산 커널은 비선형 유체정역학적 힘, 선형 유체동역학적 힘, 풍력, 계류력을 계산할 수 있다. 이를 이용해 블록에 작용하는 와이어로프와 블록 간의 간섭과 동적 접촉력을 계산하고, 그 결과를 이용하여 러그가 부착된 블록의 구조 해석을 수행하였다.

  • PDF

Parameter Estimation of Dynamic System Based on UKF (UKF 기반한 동역학 시스템 파라미터의 추정)

  • Seung, Ji-Hoon;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.772-778
    • /
    • 2012
  • In this paper, the states and the parameters in the dynamic system are simultaneously estimated by applying the UKF(Unscented Kalman Filter), which is widely used for estimating the state of non-linear systems. Estimating the parameter is very important in various fields, such as system control, modeling, analysis of performance, and prediction. Most of the dynamic systems which are dealt with in engineering have non-linearity as well as some noise. Therefore, the parameter estimation is difficult. This paper estimates the states and the parameters applying to the UKF, which is a non-linear filter and has strong noise. The augmented equation is used by including the addition of the parameter factors to the original state equation of the system. Moreover, it is simulated by applying to a 2-DOF(Degree of Freedom) dynamic system composed of the pendulum and the slide. The measurement noise of the dynamic equation is assumed to be a Gaussian distribution. As the simulation results show, the proposed parameter estimation performs better than the LSM(Least Square Method). Furthermore, the estimation errors and convergence time are within three percent and 0.1 second, respectively. Consequentially, the UKF is able to estimate the system states and the parameters for the system, despite having measurement data with noise.

Numerical Analysis for Nonlinear Static and Dynamic Responses of Floating Crane with Elastic Boom (붐(Boom)의 탄성을 고려한 해상크레인의 비선형 정적/동적 거동을 위한 수치 해석)

  • Cha, Ju-Hwan;Park, Kwang-Phil;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.501-509
    • /
    • 2010
  • A floating crane is a crane-mounted ship and is used to assemble or to transport heavy blocks in shipyards. In this paper, the static and dynamic response of a floating crane and a heavy block that are connected using elastic booms and wire ropes are described. The static and dynamic equations of surge, pitch, and heave for the system are derived on the basis of flexible multibody system dynamics. The equations of motion are fully coupled and highly nonlinear since they involve nonlinear mass matrices, elastic stiffness matrices, quadratic velocity vectors, and generalized external forces. A floating frame of reference and nodal coordinates are employed to model the boom as a flexible body. The nonlinear hydrostatic force, linear hydrodynamic force, wire-rope force, and mooring force are considered as the external forces. For numerical analysis, the Hilber-Hughes-Taylor method for implicit integration is used. The dynamic responses of the cargo are analyzed with respect to the results obtained by static and numerical analyses.

A Sliding Mode Control of an Underwater Robotic Vehicle under the Influence of Thrust Dynamics (추진기의 동역학을 고려한 무인잠수정의 슬라이딩 모드 제어)

  • Choi, Hyeung-Sik;Park, Han-Il;Roh, Min-Shik;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1203-1211
    • /
    • 2009
  • The dynamics of underwater vehicles can be greatly influenced by the dynamics of the vehicle thrusters. The control of the state of the hovering or very slow motion of the underwater vehicle is most important for automatic docking or control of the manipulator of the vehicle. The dynamics of the thruster based on the electric motor is nonlinear and has uncertain parameters. Since the dynamics of the vehicle coupled with the dynamics of the thruster is nonlinear and has uncertain parameters, a robust control is very effective for a desired motion tracking of the uncertain and nonlinear vehicle. In this paper a study was performed on the robust control scheme of the very slow motion or hovering motion of the underwater vehicle actuated by the electric motor. Also, a concurrent control on the state of the vehicle with nonlinearity and uncertain parameters was performed. A sliding mode control algorithm out of robust controllers was designed and applied, which compensates the nonlinear forces and uncertain parameters of the vehicle and actuator. Through a computer simulation, the proposed control scheme was compared with a linear PD controller and its superior performance was validated.

Nanoscale Nonlinear Dynamics of Carbon Nanotube Probe Tips (탄소나노튜브 탐침의 나노 비선형 동역학)

  • 이수일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.83-86
    • /
    • 2004
  • Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip to demonstrate the non-linear features including tip amplitude saturation preceding the dynamic buckling of the MWCNT. Surface scanning is performed using a MWCNT tip on a SiO$_2$ grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT probe tip are discussed using the experimental results.

  • PDF

Nanoscale Nonlinear Dynamics on AFM Microcantilevers (AFM 마이크로캔틸레버의 나노 비선형 동역학)

  • Lee, S.I.;Hong, S.H.;Lee, J.M.;Raman, A.;Howell, S.W.;Reifenberger, R.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1560-1565
    • /
    • 2003
  • Tapping mode atomic force microscopy (TM-AFM) utilizes the dynamic response of a resonating probe tip as it approaches and retracts from a sample to measure the topography and material properties of a nanostructure. We present recent results based on nonlinear dynamical systems theory, computational continuation techniques and detailed experiments that yield new perspectives and insight into AFM. A dynamic model including van der Waals and Derjaguin-Muller-Toporov (DMT) contact forces demonstrates that periodic solutions can be represented with respect to the approach distance and excitation frequency. Turning points on the surface lead to hysteretic amplitude jumps as the tip nears/retracts from the sample. Experiments are performed using a tapping mode tip on a graphite sample to verify the predictions.

  • PDF

Development of Direct Optimization Algorithms using Radial Basis Functions (방사상 기본 함수를 사용한 직접최적화 알고리즘에 관한 연구)

  • Hyeon Cheol Gong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.600-607
    • /
    • 1998
  • 일반적인 비선형 동역학 최적화문제를 비선형 프로그래밍 문제로 변환하는데 제어변수들을 방사성 기본 함수로 근사화하는 방법이 사용되었다. 방사성 기본 함수의 계수들을 연속적으로 보정하기 위하여 최소수정기법에 기초를 둔 비선형 프로그래밍 알고리즘이 연구되었다. 이러한 알고리즘을 실제적인 다변수 제어 시스템에 적용하여 성능을 검증하였다.

  • PDF

고체 추진제의 비선형 점탄성 구성모델

  • 정규동;김봉규;윤성기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.5-5
    • /
    • 1997
  • 고체추진제에 대한 비선형 점탄성 구성모델이 제시되었다 추진제 손상의 원인으로서 바인더와 AP 충전제사이의 접착분리를 고려하였으며, 점탄성 드웨팅판별식이 개발되었다. 손상에 의한 추진제의 연화는 모듈러스 저하로서 취급되었으며, 모듈러스저하 계산시에 드웨팅에 의하여 야기된 미소진공구의 모듈러스는 유한 상수로서 간주되었다. 바인더와 AP 충전제사이의 접착에너지는 180$^{\circ}$ 접착박리시험으로 측정하였다. 반복하중시의 비선형성은 전단변형률 불변량의 함수로서 고려되었다. 이 구성모델은 여러 하중조건에 대한 시편실험과 비교되어 잘 일치하였으며, 복잡한 미시구조학적 역학기구 없이 간단하게 고체 추진제의 거동을 예측할 수 있게 한다.

  • PDF