• Title/Summary/Keyword: 비보강조적조

Search Result 4, Processing Time 0.019 seconds

Evaluation of the Seismic Performance for Domestic URM Buildings Using Nonlinear Dynamic Analysis (비선형 동적해석을 통한 국내 비보강 조적조 건축물의 내진성능 평가)

  • Baek, Eun-Rim;Kim, Jung-Hyun;Lee, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.83-92
    • /
    • 2016
  • The purpose of this study is to evaluate the seismic performance of domestic unreinforced masonry(URM) buildings using nonlinear dynamic analysis. For that, the nonlinear hysteresis models suggested in the previous research were validated for the dynamic analysis. The results of the shaking table test were compared with the dynamic analysis results using the suggested nonlinear hysteresis models. As a result, the nonlinear hysteresis models were expected to be applicable to the dynamic analysis of URM buildings. Based on the models, the dynamic analysis of domestic URM buildings varying the number of stories and opening ratio was carried out. The analysis results showed that most of the domestic URM buildings were very vulnerable to design earthquake in Korea.

Dynamic Response of Unreinforced Masonry Building (비보강 조적조의 동적 거동)

  • Kim, Nam-Hee;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.1-14
    • /
    • 2004
  • The seismic behavior of a 1/3-scale model of a two-story unreinforced masonry (URM) structure typically used in constructing low-rise residential buildings in Korea is studied through a shaking table test. The purposes of this study are to investigate seismic behavior and damage patterns of the URM structure that was not engineered against seismic loading and to provide its experimental test results. The test structure was symmetric about the transverse axis but asymmetric to some degrees about longitudinal axis and had a relatively strong diaphragm of concrete slab. The test structure was subjected to a series of differentlevels of earthquake shakings that were applied along the longitudinal direction. The measured dynamic response of the test structure was analyzed in terms of various global parameters (i.e., floor accelerations, base shear, floor displacements and storydrift, and torsional displacements) and correlated with the input table motion. Moreover, different levels of seismic performance were suggested for performance-based design approach. The results of the shaking table test revealed that the shear failure was dominant on a weak side of the 1stfloor while the upper part of the test model remained as a rigid body. Also, it was found that substantial strength and deformation capacity existed after cracking.

Nonlinear Analysis Model Considering Failure Mode of Unreinforced Masonry Wall (파괴모드를 고려한 비보강 조적벽체의 비선형 해석모델)

  • Baek, Eun-Lim;Kim, Jung-Hyun;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.33-40
    • /
    • 2014
  • The final purpose of this study is to evaluate the seismic performance of unreinforced masonry (URM) building more accurately. For that, shear strength and hysteresis model considering failure mode of the URM wall were discussed. The shear strength of URM wall without openings could be calculated by determining on the minimum value between the rocking strength suggested by domestic research and the sliding strength suggested by FEMA. The wall having openings could be predicted properly by the FEMA method. And the nonlinear hysteresis models for flexural and shear behaviors considering failure mode were proposed. As the result of the nonlinear cyclic analysis that carried out using suggested models, these analysis models were proper to represent the seismic behavior of URM walls.

Shear Strength and Failure Mode of Architectural Masonry Walls (내진보강된 치장조적벽의 파괴특성과 전단강도)

  • Jin, Hee-Yong;Han, Sang-Whan;Park, Young-Mi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.89-92
    • /
    • 2008
  • This study investigates the shear behavior of architectural masonry veneer wall reinforced with specific reinforcement details proposed by this study. For this purpose, experimental tests were conducted using one un-reinforced masonry(URM) wall specimen and three reinforced masonry(RM) wall specimens under quasi static cyclic loads. Un-reinforced(plain) masonry wall is expressed that behavior and failure mode are different for aspect ratio(L/H) and axial compressive force. The test variables are wall aspect ratio and presence of reinforcement. These specimens are masonry structure for architectural clading that is not to exist the axial compressive force. thus the axial compressive force is excepted from test variable. Test result, Behavior of specimens are dominated over rocking mode, but final failure modes are combined with different behaviors. And FEMA273 has proposed the equation of shear strength of masonry pier subjected to in-plane loading. Shear strength equations are classified four types of failure mode that is Rocking, and Toe-Crushing, Bed-Joint-Sliding and Diagonal-Tension. FEMA273 equations predict the behavior modes well, but shear strength is shown in different result.

  • PDF