• 제목/요약/키워드: 비모수통계분석

검색결과 243건 처리시간 0.026초

Nonparametric Bayesian Statistical Models in Biomedical Research (생물/보건/의학 연구를 위한 비모수 베이지안 통계모형)

  • Noh, Heesang;Park, Jinsu;Sim, Gyuseok;Yu, Jae-Eun;Chung, Yeonseung
    • The Korean Journal of Applied Statistics
    • /
    • 제27권6호
    • /
    • pp.867-889
    • /
    • 2014
  • Nonparametric Bayesian (np Bayes) statistical models are popularly used in a variety of research areas because of their flexibility and computational convenience. This paper reviews the np Bayes models focusing on biomedical research applications. We review key probability models for np Bayes inference while illustrating how each of the models is used to answer different types of research questions using biomedical examples. The examples are chosen to highlight the problems that are challenging for standard parametric inference but can be solved using nonparametric inference. We discuss np Bayes inference in four topics: (1) density estimation, (2) clustering, (3) random effects distribution, and (4) regression.

Reliability Analysis Using Parametric and Nonparametric Input Modeling Methods (모수적·비모수적 입력모델링 기법을 이용한 신뢰성 해석)

  • Kang, Young-Jin;Hong, Jimin;Lim, O-Kaung;Noh, Yoojeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제30권1호
    • /
    • pp.87-94
    • /
    • 2017
  • Reliability analysis(RA) and Reliability-based design optimization(RBDO) require statistical modeling of input random variables, which is parametrically or nonparametrically determined based on experimental data. For the parametric method, goodness-of-fit (GOF) test and model selection method are widely used, and a sequential statistical modeling method combining the merits of the two methods has been recently proposed. Kernel density estimation(KDE) is often used as a nonparametric method, and it well describes a distribution function when the number of data is small or a density function has multimodal distribution. Although accurate statistical models are needed to obtain accurate RA and RBDO results, accurate statistical modeling is difficult when the number of data is small. In this study, the accuracy of two statistical modeling methods, SSM and KDE, were compared according to the number of data. Through numerical examples, the RA results using the input models modeled by two methods were compared, and appropriate modeling method was proposed according to the number of data.

Comparison of estimation methods for expectile regression (평률 회귀분석을 위한 추정 방법의 비교)

  • Kim, Jong Min;Kang, Kee-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • 제31권3호
    • /
    • pp.343-352
    • /
    • 2018
  • We can use quantile regression and expectile regression analysis to estimate trends in extreme regions as well as the average trends of response variables in given explanatory variables. In this paper, we compare the performance between the parametric and nonparametric methods for expectile regression. We introduce each estimation method and analyze through various simulations and the application to real data. The nonparametric model showed better results if the model is complex and difficult to deduce the relationship between variables. The use of nonparametric methods can be recommended in terms of the difficulty of assuming a parametric model in expectile regression.

Comparison of Some Nonparametric Statistical Inference for Logit Model (로짓모형의 비모수적 추론의 비교)

  • 정형철;김대학
    • The Korean Journal of Applied Statistics
    • /
    • 제15권2호
    • /
    • pp.355-366
    • /
    • 2002
  • Nonparametric statistical inference for the parameter of logit model were examined. Usually nonparametric approach is milder than parametric approach based on normal theory assumption. We compared the two nonparametric methods for legit model, the bootstrap and random permutation in the sense of coverage probability. Monte Carlo simulation is conducted for small sample cases. Empirical power of hypothesis test and coverage probability for confidence interval estimation were presented for simple and multiple legit model respectively. An example were also introduced.

Introduction of NLIN90, a software for nonlinear regression analysis (비선형 회귀분석을 위한 소프트웨어 NLIN90의 소개)

  • 강근석
    • The Korean Journal of Applied Statistics
    • /
    • 제6권1호
    • /
    • pp.163-172
    • /
    • 1993
  • A computer software for nonlinear regression analysis, NLIN90, was developed to provide easy access and useful information for more precise analysis which can be obtained from the newly developed theory. Together with the elementary statistics, it provides statistics for curvature analysis of model function and of each parameter, for curvaure analysis of transformed parameters, for experimental design analysis, and for residual analysis. Easy access is obtained by utilizing a database of nonlinear models.

  • PDF

비모수 회귀모형의 차분에 기저한 분산의 추정에 대한 고찰

  • 김종태
    • Communications for Statistical Applications and Methods
    • /
    • 제5권1호
    • /
    • pp.121-131
    • /
    • 1998
  • 이 논문의 목적은 비모수 회귀모형에 있어서의 오차의 분산을 추정하는 방법들 중 차분에 기저한 방법 (difference-based methods)을 이용한 기존의 추정량들을 비교 분석하는데 있다. 특히 점근적인 최적 이차 차분에 기저한 Hall과 Kay, Titterington(1990)의 HKT 추정량에 대한 그들의 추정량에 대한 문제점들을 제시하고, HKT추정량과, GSJS추정량, Rice추정량에 대하여 모의 실험을 이용하여 모수에 대한 수렴 속도를 비교 분석 하였다. 또한 GSJS 추정량에 대한 일치성과 수렴 속도를 보였다.

  • PDF

비모수 퍼지회귀모형

  • Choe, Seung-Hoe;Kim, Hae-Gyeong;Seong, Na-Yeong
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.199-201
    • /
    • 2003
  • 본 연구에서는 크리스프자료(crisp data)인 독립변수와 퍼지자료(fuzzy data)인 종속변수 사이의 관계가 특정한 함수로 표현되지 않는 비모수 퍼지회귀모형을 분석하기위하여 퍼지수 순위와 퍼지순위변환방법을 소개하고, 모의실험을 통하여 퍼지순위변환방법의 효율성을 조사한다.

  • PDF

A simulation study on projection pursuit discriminant analysis (투사지향방법에 의한 판별분석의 모의실험분석)

  • 안윤기;이성석
    • The Korean Journal of Applied Statistics
    • /
    • 제5권1호
    • /
    • pp.103-111
    • /
    • 1992
  • The projection pursuit method has been gussested as a technique for the analysis of the multivariate data. This method seeks out interesting linear projections of the multivariate data onto a line of a plane to solve the curse or dimensionality. In this paper we developed the discriminant analysis by using the projection method and simulations were used for comparison between this and other existing discriminant analysis methods.

  • PDF

On Tests for Marginal Homogeneity (주변동질성 검정법의 비교분석)

  • 강민희;박태성;이성곤
    • The Korean Journal of Applied Statistics
    • /
    • 제14권1호
    • /
    • pp.211-221
    • /
    • 2001
  • 본 논문에서는 2$\times$2 분할표의 주변동질성 검정에서 사용될 수 있는 통계량들을 소개하고, 이 통계량들을 비교하였다. 먼저 주변동질성 검정에 민감하게 영향을 주는 모수를 정의한 후에 이 모수들의 효과를 예시하였다. 또한 이 모수들을 이용하여 모의실험을 통해여러 검정법들을 비교해본 결과 McNemar 검정이 다른 검정력보다 더 좋은 성질을 가지고 있음을 보였다.

  • PDF

A comparison study on regression with stationary nonparametric autoregressive errors (정상 비모수 자기상관 오차항을 갖는 회귀분석에 대한 비교 연구)

  • Yu, Kyusang
    • The Korean Journal of Applied Statistics
    • /
    • 제29권1호
    • /
    • pp.157-169
    • /
    • 2016
  • We compare four methods to estimate a regression coefficient under linear regression models with serially correlated errors. We assume that regression errors are generated with nonlinear autoregressive models. The four methods are: ordinary least square estimator, general least square estimator, parametric regression error correction method, and nonparametric regression error correction method. We also discuss some properties of nonlinear autoregressive models by presenting numerical studies with typical examples. Our numerical study suggests that no method dominates; however, the nonparametric regression error correction method works quite well.