• Title/Summary/Keyword: 비례-미분 제어기

Search Result 81, Processing Time 0.027 seconds

A Development of Sub-Controller for Game Motion Simulator (게임기용 운동재현기의 하위제어기 설계)

  • Jung, Gyu-Hong;Suh, Chung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.146-151
    • /
    • 2001
  • The Grand-Touring is a game motion simulator that simulates the race-car driving motion with three hydraulic cylinders which connect the platform and base in parallel. Its motion control system consists of the PC-based main controller and micro-controller based sub-controller. The former one process the dynamic image of race-car in response to the driver's action and computes the reference command for each cylinder and the latter one is designed for the tracking control of hydraulic cylinder and interfacing the auxiliary signals between various sensors/actuator and main controller. In this research, we developed the sub-controller that implements the required functions of Grand-Touring and prove the overall performance with experiments.

  • PDF

Papers : Feasibility Study on Attitude Control of Spacecraft Using Pulsed Plasma Thrusters (논문 : 플라즈마 펄스 추력기를 이용한 인공위성 자세제어 기법 연구)

  • Ji, Hyo-Seon;Lee, Ho-Il;Lee, Hun-Gu;Tak, Min-Je
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.46-56
    • /
    • 2002
  • In this paper, the feasibility of the attitude control of a spacecraft using pulsed plasma thrusters(PPTs) is studied. The PPT consumes less propellant mass requied for the orbit management or attitude control owing to its high specific impulse characteristics, compared with traditional gas propulsion system. The PPT is expected to be highly adequete for the missions requiring long-duration operations because it has relatively long operation time and easy implementation. The feasibility of the PPT for attitude control of a small satellite system is addressed through realistic missions. The classical PD controller and a fuzzy logic controller are tested, and fuel saving fuzzy logic controller is then proposed for more flexible mission performance.

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

The Design of the Controller for Bio-wrap Winding Machine using Muti-variable Decentralized Control Technique (다중 변수 분산 제어기법을 이용한 생분해성 랩 와인딩 기계의 제어기 설계)

  • Kim H.S.;Park W.C.;Shen Y.D.;Yang S.M.;Kee C.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1450-1454
    • /
    • 2005
  • In this paper, the control strategy of the tension and speed based a prototype bio-wrap winding machine is developed. The decentralized control strategy using PID control algorithm applied for each subsystem is proposed to control the each system's desired outputs, because the tension of each subsystem effects that of next roll system. The computer simulations and the experiment results are presented to show that the proposed control scheme is feasible for a prototype bio-wrap winding machine.

  • PDF

PDA/FLC Depth control system design for underwater vehicles (수중운동체를 위한 PDA/FLC 심도 제어시스템 설계)

  • Kim, J.S.;Park, J.L.;Kim, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.25-32
    • /
    • 1994
  • A nonlinear control algorithm for the depth control of underwater vehicles is presented. In order to consider the deadzone effect of the flow control valve, a nonlinear fuzzy logic controller (FLC) is synthesized and combined with a linear proportional-derivative-acceleration (PDA) controller, which is called the PDA/FLC controller. And to show the effectiveness of the PDA/FLC control system, it is compared with the linear PDA control system through computer simulation. It is found that the PDA/FLC control system is suitable one to maintain the desirable depth of underwater vehicles with deadzone.

  • PDF

Optimal Neural Network Controller Design using Jacobian (자코비안을 이용한 최적의 신경망 제어기 설계)

  • 임윤규;정병묵;조지승
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.85-93
    • /
    • 2003
  • Generally, it is very difficult to get a modeling equation because multi-variable system has coupling relations between its inputs and outputs. To design an optimal controller without the modeling equation, this paper proposes a neural-network (NN) controller being learned by Jacobian matrix. Another major characteristic is that the controller consists of two separated NN controllers, namely, proportional control part and derivative control part. Simulation results for a catamaran system show that the proposed NN controller is superior to LQR in the regulation and tracking problems.

Active Shape Control of Composite Beam Using Shape Memory Alloy Actuators (형상기억합금 작동기를 이용한 복합재 보의 능동 형상 제어)

  • Yang, Seung-Man;Roh, Jin-Ho;Han, Jae-Hung;Lee, In
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.18-24
    • /
    • 2004
  • In this paper, active shape control of composite structures actuated by shape memory alloy (SMA) wires is presented. The thermo-mechanical behaviors of SMA wires were experimentally measured. Hybrid composite structures were established by attaching SMA actuators on the surfaces of graphite/epoxy composite beams using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperature. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For (aster and more accurate shape/deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

A VSMFC Controller Design of Robot Manipulators Using Computed Torque Method (CTM을 위한 로보트 매니퓰레이터의 VSMFC 제어기 설계)

  • Park, Sei-Seung;Park, Chong-Kug
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.53-59
    • /
    • 1990
  • In the control of robot manipulators, this paper presents a design of a new variable structure model following controller(VSMFC) using computed torque method (CTM). A sufficient condition for the existence of a sliding mode is derived by Lyapunov function. The reference model is a double integrators and the acceleration input consists of a proportional-derivative controller for the purpose of the stabilization of system and the desired performance. The proposed control scheme which consists of upper bounded and estimated value of each term of the manipulator of matrix inversion. Therefore the simulation results show that this controller is improved to the convergence of desired trajectories.

  • PDF

An Adaptive Speed Control of a Diesel Engine by means of a Model Matching method and the Nominal Model Tracking Method (모델 매칭법과 규범모델 추종방식에 의한 디젤기관의 적응속도제어)

  • 유희한;소명옥;박재식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.609-616
    • /
    • 2003
  • The purpose of this study is to design the adaptive speed control system of a marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. The authors proposed already a new method to determine efficiently the PID control Parameters by the Model Matching Method. typically taking a marine diesel engine as a non-oscillatory second-order system. But. actually it is very difficult to find out the exact model of a diesel engine. Therefore, when diesel engine model and actual diesel engine are unmatched as an another approach to promote the speed control characteristics of a marine diesel engine, this paper Proposes a Model Reference Adaptive Speed Control system of a diesel engine, in which PID control system for the model of a diesel engine is adopted as the nominal model and Fuzzy controller and derivative operator are adopted as the adaptive controller.

Controller Design for Stable Engine Idle Mode (안정한 엔진 공회전 모드를 위한 제어기 설계)

  • 이영춘;방두열;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • The engine idle speed mode becomes worse as one drives a vehicle for several years. This is due to ageing of engine and power-train parts. In this case, unstable idle conditions such as engine stall and droop are frequently experienced when the engine gets heavy torque loads due to power steering pump and air conditioning compressor. The objective of this paper is to study on the idle speed control using PID controller under load disturbances. The input of the PID controller is an error of rpm. The output of the PID controller is an ISCV duty cycle. The dSPACE Controller Boards are used to interface with engine. The on-vehicle test is realized using by SIMULINK and BLOCKSETS tools. The real time interface control panel supplied by Control Desk S/W is designed to have good results in engine idle speed control.

  • PDF