• Title/Summary/Keyword: 비례 감압 밸브

Search Result 12, Processing Time 0.024 seconds

Pressure Control Characteristics of Proportional Pressure Reducing Valve (비례감압밸브의 압력제어특성)

  • Yun, S.N.;Ham, Y.B.;Jo, J.D.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.68-73
    • /
    • 2003
  • The purpose of this study is to develop a new proportional pressure reducing valve and to verify the validity of a new mechanism with pressure control pin. The dynamic characteristics of the object pressure reducing valve was studied by numerical analysis of the mathematical model. Also, static and dynamic characteristics of the new pressure control valve were tested with a testing system based on the test standard.

  • PDF

Numerical Analysis of Proportional Pressure Control Valve using Bondgraph (본드선도를 이용한 비례전자 감압밸브의 수치해석)

  • Yang, K.U.;Hue, J.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.62-70
    • /
    • 2008
  • The paper made a description of the method for numerical analysis and modeling of a proportional pressure control valve by bondgraph. The valve is a three port pressure regulator valve, consists of two subsystems; a proportional solenoid and a spool assembly. A purpose of this study is to analysis the dynamic characteristics of the valve using bondgraph method and to verified results that each of parameters has an effect on modeling. It considered the effect which the presence of solenoid, flow coefficient and non-linearity of resistance causes in the valve modeling. In particular, it is analyzed the effect that the solenoid interacted with modeling results and characteristics of the nonlinear resistance through orifice on the supply and discharge side of valve. Thus this paper described method to present nonlinear characteristics by bondgraph modeling method, so that we could know easily result that each parameters has an effect on the modeling.

  • PDF

Development of a Direct-Operated Proportional Pressure Reducing Valve for Low-Band Type Active Suspension Control (Low-Band Type 능동형 현가제어를 위한 직동식 전자비례 감압밸브의 개발)

  • 홍예선;류시복;김영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.75-84
    • /
    • 1994
  • In general direct-operated pressure reducing valves have been gardly applied to a dynamic control system such as active suspension control because of their poor control stability. But they are more robust than pilot-operated type and do not need pilot control flow. In this paper development of a new direct-operated proportional pressure reducing valve for low-band type active suspension control is reported. By means of a special damper directly linked to the valve spool, the control stability could be effectively improved without drawback in response time. The linearity error was less than $\pm$3.5%. Applied to an experimental active suspension system the new valve showed the $-90^{\circ}$ phase delay at 4Hz with 20% sinusoidal signal input and could control the suspension system with almost same performance as that with a pilot-operated type valve.

  • PDF

A Modeling of Proportional Pressure Control Valve and its Control (비례전자 감압밸브의 모델링과 제어)

  • Yang, K.U.;Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.71-77
    • /
    • 2002
  • In this study, a dynamic model of proportional pressure control valve using the bond graph and a predictive controller are presented in the form of dynamic matrix control which is concerned with a design method of digital controller for the electro hydraulic servo system. The bond graph can be utilized for all types of systems which involve power and energy, and it is applied to a propotional pressure control valve in this study. Recently, many researchers suggested that better control performance could be obtained by means of the predictive controls with future reference input, future control output and future control error. The Predictive controller is very practical because the controller can be easily applicable to a personal computer or a microprocessor. This study investigates through numerical simulations that hydraulic system with the predictive controller shows very good control performances.

  • PDF

Optimization of Design Parameters of a EPPR Valve Solenoid using Artificial Neural Network (인공 신경회로망을 이용한 전자비례 감압밸브의 솔레노이드 형상 최적화)

  • Yoon, Ju Ho;Nguyen, Minh Nhat;Lee, Hyun Su;Youn, Jang Won;Kim, Dang Ju;Lee, Dong Won;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.34-41
    • /
    • 2016
  • Unlike the commonly used On/Off solenoid, constant attraction force which is independent of plunger displacement is a considerably important characteristic to proportional solenoid of the EPPR Valve. Attraction force uniformity is mainly affected by the internal shape design parameters. Due to a number of shape design parameters, the optimal parameter values are very complex and time consuming to find by trial and error method. Much research has been conducted or are still in progress to find the optimal parameter values by applying various optimization techniques like Genetic Algorithm, Evolution Strategy, Simulated Annealing, or the Taguchi method. In this paper, the design parameters which have primary effects on the attraction force uniformity and the average attraction force are decided by main effects analysis of Design of Experiments. Optimal parameter values are derived using finite-element analysis and a neural network model.

A Study on the Bucket Tip's Position Control for the Intelligent Excavation System (지능형 굴삭 시스템의 버킷 끝단 위치제어에 관한 연구)

  • Kim, K.Y.;Jang, D.S.;Ahn, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.32-37
    • /
    • 2008
  • For the bucket tip position control of the excavator, a traditional hydraulic excavator system was exchanged into an electro-hydraulic one. EPPR valves are attached to the traditional MCV and hydraulic joysticks are replaced by electronic ones to develop the electro-hydraulic system. To control the electronic pump with a good performance, the control logic for the pump is deduced from the AMESim simulation and the experimental method on the test bench. To get a good position control performance of the excavator bucket tip, PI+AntiWindup controller is selected as a position controller. The experimental results showed the good controllability for the electro-hydraulic excavator system on the test bench.

  • PDF

Simulation of EPPR Valve Flow Force Characteristic using CFD Analysis (CFD를 이용한 EPPR 밸브 유동력 특성 분석 및 시뮬레이션)

  • Yoon, Ju Ho;Youn, Jang Won;Son, Ho Yeon;Kim, Dang Ju;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.14-22
    • /
    • 2017
  • Flow force is the additional unbalanced force acting on the valve spool by fluid flow, excluding the static pressure force that is offset on the spool land wall at the same magnitude. When designing the valve spool, it is assumed that the same average value of static pressure is applied to the inlet and outlet spool land wall in one chamber. However, the high velocity of the fluid flow by the inlet or outlet metering orifice creates unbalanced pressure distribution and generates additional force in the opposite direction to that of the solenoid attraction force. This flow force has a negative effect on the control performance of the EPPR valve, which needs to develop uniform output pressure along the entire spool control range. In this study, we developed a 3D model of the EPPR valve and conducted flow force characteristic analysis using CFD S/W (ANSYS FLUENT). The alleviated flow force model was derived by adjusting the design parameters of the spool notch.

Implementation of Roll Control System for Passenger Car (승용차의 차량 롤 제어를 위한 시스템 구현)

  • 장주섭;이상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.20-26
    • /
    • 1997
  • A System for reducing vehicle body roll by active control is developed. The stabilizer bar with hydraulic rotary actuator produces anti-roll moment which suppresses roll tendency. This reduction of roll improves the driving safety as well as the ride comfort. Vehicle test data shows considerable reduction of roll angle during steady-state turning. Also improvement of ride comfort is achieved by making the actuator freely rotatable, i.e. by connecting all chambers of actuator in normal driving conditions. A control algorithm using steering wheel angle and vehicle speed signal as input valve is applied. It is compared with signal of the G-sensor.

  • PDF

Control of Bent Axis Inclination Pistion Motor for Application Continuously Variable Transmission System (휠 타입 굴삭기의 무단변속시스템 적용을 위한 액시얼 사축식 피스톤 모터의 제어)

  • 이성민;장성욱;박명관;이진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.463-467
    • /
    • 2003
  • The traveling system of wheel type excavator, that is applied to drive method by friction of transmission, has many problems about transmisson. It need to settle the problem which is occurred at wheel type excavator and to study continuously variable transmisson which is used with only travel motor. This paper base on mathmetical modeling for travel motor and travel motor of wheel type excavator is designed continuously variable transmisson system without transmisson by direct control method.

  • PDF