• Title/Summary/Keyword: 비례하중

Search Result 120, Processing Time 0.032 seconds

GEOMETRIC NINLINEAR ANALYSIS OF UNERGROUND LAMINATED COMPISITE PIPES (기하학적 비선형을 고려한 지하매설 복합재료 파이프의 해석)

  • 김덕현;이인원;변문주
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.65-70
    • /
    • 1989
  • An analytical study was conducted using the Galerkin technique to determine behaviour of thin fibrereinforced and laminated composite pipes under soil pressure. Geometric nonlinearity and material linearity have been assumed. It is assumed that vertical and lateral soil pressure are proportional to the depth and lateral displacement of the pipe respectively. It is also assumed that radial shear stress is negligible because the ratio of thickness to the radius of pipe is very small. The above results are verified by the finite element analysis.

  • PDF

Analysis of Load Distribution Behavior in Vertical Extension Remodeling from Stiffness of Existing and Reinforcing Pile by Load Test (현장 재하시험을 통한 수직증축시 기존 말뚝과 보강 말뚝의 강성에 따른 하중분담거동 분석)

  • Kim, Seok-Jung;Wang, Cheng-Can;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.61-72
    • /
    • 2020
  • It is generally considered that differences of axial stiffness between exiting pile and reinforcing pile affect the load distribution ratio during vertical extension remodeling. But there are few cases to verify the effect of stiffness by field load test on load distribution ratio in Korea. In this paper, a series of load tests for micropiles were carried out to evaluate the effect of axial stiffness on the load distribution ratio. First, different types of micropiles were constructed so that conventional micropiles simulated existing piles and waveform micropiles simulated reinforcing piles. Secondly, load tests were performed to evaluate the stiffness of each piles. After then, the raft was installed to make a piled raft system and load tests were applied on foundation to verify the effect of axial stiffness on the load distribution ratio. The experimental results show that the stiffness of waveform micropiles were 2.5 times larger than that of conventional micropiles, and the load distribution ratio between existing and reinforcing piles was increased according to axial stiffness of piles.

Creep Deformation Characteristics of Weathered Granite Soil (화강풍화토의 creep 변형특성)

  • Park, Heung-Gyu;Kim, Yong-Ha;Paeng, Woo-Seon;Lee, Hae-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.43-52
    • /
    • 2007
  • This study analyzes the characteristics of creep deformation behavior of weathered granite soils used in road embankments. The creep strain under the unconfined compressive state demonstrated an excellent agreement with the theoretical analysis of the burgers substance. The elastic deformation showed a termination in its characteristics after a long-term period owing to the increase in applied loads. The primary creep strain was 0.0028 and concluded that the deformation completed within $3{\sim}5$ days after applying the loads. Also, the completing time of creep deformation in the embankment soils increased in proportion to the height of embankment soils. The secondary creep strain is about 50% of the primary creep strain.

A Study on Structural Performance Evaluation of RC Beams Strengthened with CFRP Plate (탄소섬유판으로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.212-217
    • /
    • 2004
  • Carbon fiber reinforced plastic(CFRP) plate Is one of the alterative materials for soengthening of reinforced and prestressed connote members due to excellent strength and light weight In this paper, the behavior of beams strengthened with CFRP plate and CFS(Carbon fiber sheet) is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear lone appear in same position. The main failure mode is a peeling-off of the CFRP plate near the loading points due to flexural-shear crack, Because of this failure mode, failure load is not linearly proportional to the thickness of CFRP plates. When beam is wrapped with CFS around oかy loading point it does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When line moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened beam and moment of unstrengthened beam is proposed 1.5-2.0. In order to use the plate of thicker than 6mm, CFS may be extended to the location which moment of strengthened beam is 1.5 times than moment of unstrengthened beam.

The Practice of Bending Deflection using Non-destructive MOE of Glulam (비파괴 탄성계수를 이용한 집성재의 휨변형 예측)

  • Park, Jun-Chul;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • In the glulam beam deflection it is necessary to check the reliability of theory formula, because of wood anisotropy and wood qualities (knot, slop of grain). In this experiment, when bending stress occurred on glulam, practice deflection of glulam measuring with AICON DPA-Pro 3D system were compared with prediction deflection calculated as substituting MOE through non-destructive testing and static MOE through bending test in differential equation of deflection curve. MOE using ultrasonic wave tester of laminae, MOE using natural frequencies of longitudinal vibrations ($E_{cu}$, $E_{cf}$), MOE using ultrasonic wave tester of glulam ($E_{gu}$) and MOE using natural frequencies of longitudinal vibrations ($E_{gf}$) were substituted in this experiment. When practice deflection measured by 3D system was compared with prediction deflection calculated with differential equation of deflection curve, within proportional limit the ratio of practice deflection and prediction deflection was similar as 1.12 and 1.14, respectively. Deflection using ultrasonic wave tester was 0.89 and 0.95, Deflection using natural frequencies of longitudinal vibrations was 1.07 and 1.10. The results showed that prediction deflection calculated by substituting using non-destructive MOE of glulam having anisotropy in differential equation of deflection curve was agreed well with practice deflection.

Optimization of Reinforcement Effect of Large-diameter Drilled Deep Foundation (보강형 현장타설말뚝의 최적보강효과 분석)

  • 남대승;김수일;이준환;윤경식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • Drilled deep foundations of large diameter are often used for foundations of transmission towers. As tower structures become larger in modern society, there is a need of more efficient and economical design of large-diameter drilled deep foundations. Reinforced drilled deep foundations are popular in Japan for the foundation of tower structures. Stiffeners attached to the shaft of the foundation are used to increase the shaft resistance. This study aims at analyzing the effect of reinforcement with large-diameter drilled deep foundations based on numerical analysis of the representative soil and rock conditions in Korea. The numerical analyses are conducted to analyze the reinforcement effect of various stiffener conditions of number, inclination, location and length. Regarding to number of stiffeners, the effect of reinforcement for weathered and soft rocks increases proportionally as the number of stiffeners increases. For weathered soil, however, the effect of reinforcement increases at a lower rate. The effect of stiffener location is nearly negligible for axially loading cases, while it is significant for laterally loading cases. For the laterally loading cases, upper locations of stiffener give greater reinforcement effect than that of lower location. For stiffener inclinations of axial loading cases, a stiffener inclination equal to 60$^{\circ}$ gives the greatest reinforcement effect.

The Determination of Critical Buckling Load Applied to Tapered Columns (일정변단면(一定變斷面) 장주(長柱)의 임계좌굴하중(臨界挫屈荷重)의 결정(決定))

  • Yu, Chul Soo;Sohn, Sung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.93-101
    • /
    • 1984
  • New formulas to determine the critical elastic buckling load of long tapered columns are given. This study is restricted to solid round or rectangular columns with fixed-free ends as often used in highway design. The exact solution of the differential equation of the deflection curve is expressed in terms of Bessel Function and the solution is numerically evaluated using Bisection method by computer. In the F.E.M analysis of columns under their own weight, the stability problem can be resulted in a eigen value problem of conservative system. Approximate solution by the F.E.M is evaluted numerically using Jacobi method and compared with exact solution of the prismatic column to increase the precision. In addition, critical buckling load of the tapered column for every shape factor and ratio of cross-sectional change (Diameter of bottom end/Diameter of upper end) was converted into a comparable expression to critical buckling load of the prismatic column.

  • PDF

Failure Mode and Strength of Unidirectional Composite Single Lap Bonded Joints II. Failure Prediction (일방향 복합재료 Single Lap 접합 조인트의 파손 모드 및 파손 강도 II. 파손 예측)

  • Yi Young-Moo;Kim Chun-Gon;Kim Kwang-Soo
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A methodology is presented for the failure prediction of composite single-lap bonded joints considering both of composite adherend failure and bondline failure. An elastic-perfectly plastic model of adhesive and a delamination failure criterion are used in the methodology. The failure predictions have been performed using finite element method and the proposed methodology. The failure prediction results such as failure mode and strength have very good agreements with the test results of joint specimens with various bonding methods and parameters. The influence of variations in the effective strength (that is, adhesion performance) and plastic behavior of adhesive on the failure characteristics of composite bonded Joints are investigated numerically. The numerical results show that optimal joint strength is archived when adhesive and delamination failure occur in the same time.

Strength Prediction of Spatially Reinforced Composites (공간적으로 보강된 복합재료의 강도예측)

  • 유재석;장영순;이상의;김천곤
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.39-46
    • /
    • 2004
  • In this study, the strength of spatially reinforced composites (SRC) are predicted by using stiffness reduction for each structural element composed of a rod stiffness in each direction and a matrix stiffness proportional to its rod volume fraction. Maximum failure strain criteria is applied to rod failure, and modified Tsai-Wu failure criteria to matrix failure. The material properties composed of the tensile failure strain of a rod, the compressive failure strain of 3D SRC, the tensile and compressive strength of the 3D SRC in the $45^{\cir}$ rotated direction from a rod and the shear strength of the 3D SRC are measured to predict the SRC strength. The strength distributions of the 3D/4D SRC in rod and off-rod direction have the largest and the smallest values, respectively. A variable load step is selected to increase an efficiency of strength distribution calculation. Uniform load step is applied when a load history is needed. The results of compressive strength from analysis and experiment show the 18 % difference though the initial slop is coincident with each other.

Effects of Flexural Modulus and Fiber Bridging on the Interlaminar Fracture Energy of Multidirectional Composite Laminates under High Rate Loading (고속하중을 받는 다방향복합적층판의 층간파괴에너지에 미치는 굽힘탄성계수와 섬유가교의 효과)

  • ;A.J.Kinloch
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.40-53
    • /
    • 1999
  • The interlaminar facture behavior of multidirectional carbon-fiber/epoxy composite laminates under low and high rates of test, up to rate of about 11.4m/s has been investigated using the double cantilever beam specimens. The mode I loasing with rates above 1.0m/s had considerable dynamic effects on the load-time curves and thus revealed higher values of the average crack velocity than thet expected from a simple proportional relationship with the test rate. The modified beam analysis utilizing only the opening displacement and crack length exhibited an effective means for evaluating the dynamic fracture energy $G_{IC}$. Flexural modulus increased gradually with an increase of the test rate, which was utilized in the evaluation of $G_{IC}$. Values of $G_{IC}$ at the crack initiation and arrest were scarcely changed with increasing test rate up to 1.0m/s. However the maximum $G_{IC}$ was much enlarged at 11.4m/s due to the large amount of fiber bridging the crack tip. The larger the initial crack length, the smaller the maximum $G_{IC}$ at high rate.

  • PDF