• Title/Summary/Keyword: 비등방성 모형

Search Result 29, Processing Time 0.025 seconds

Analysis of Generating Mechanism of Secondary Currents in Open-Channel Flows by Reynolds Stress Model (레이놀즈응력모형을 이용한 개수로 흐름에서의 이차흐름 생성 메커니즘 분석)

  • Choi, Sung-Uk;Kang, Hyeongsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.381-385
    • /
    • 2004
  • 본 인구에서는 레이놀즈응력모형을 이용하여 직사각형 개수로 흐름을 수치모의 하고 이차흐름의 생성 메커니즘을 제시하였다. 수치모의 결과 자유수면과 측벽의 접합부 근처에서 inner secondary flow가 발생하였다. 이는 최근 Grega 등(1995)과 Hsu 등(2000)에 의해 밝혀진 새로운 이차흐름이다. 또한 측벽에서의 전단력 분포를 계산한 결과 inner secondary flow에 의하여 수면 근처에서의 전단력 값이 증가하는 것으로 나타났다. 계산된 결과를 이용하여 와도 방정식에서 각 항의 크기를 비교하여 이차 흐름의 생성 메커니즘을 살펴보았다. 그 결과 벽 및 측벽 경계 부근에서는 난류의 비등방성에 의한 와도 생성항에 의해 이차 흐름이 생성되고, 경계와 멀리 떨어진 영역에서는 레이놀즈응력에 의한 와도 생성항이 이차흐름을 생성시키는데 중요한 역할을 하는 것으로 나타났다.

  • PDF

Numerical Simulations of Cellular Secondary Currents in Open-Channel Flows using Non-linear k-ε Model (비선형 k-ε 모형을 이용한 개수로 흐름에서의 격자형 이차흐름 구조 수치모의)

  • Kang, Hyeongsik;Choi, Sung-Uk;Park, Moonhyeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.643-651
    • /
    • 2008
  • In the present paper, turbulent open-channel flows over longitudinal bedforms are numerically simulated. The Reynolds- averaged Navier-Stokes equations in curvilinear coordinates are solved with the non-linear $k-{\varepsilon}$ model by Speziale( 1987). First, the developed model is applied to rectangular open channel flows for purposes of model validation and parameter sensitivity studies. It is found that the parameters $C_D$ and $C_E$ are important to the intensity of secondary currents and the level of turbulent anisotropy, respectively. It is found that the non-linear $k-{\varepsilon}$ model can hardly reproduce the turbulence anisotropy near the free surface. However, the overall pattern of the secondary currents by the present model is seen to coincide with measured data. Then, numerical simulations of turbulent flows over longitudinal bedforms are performed, and the simulated results are compared with the experimental data in the literature. The simulated secondary currents clearly show upflows and downflows over the ridges and troughs, respectively. The numerical results of secondary currents, streamwise mean velocity, and turbulence structures compare favorably with the measured data. However, it is observed that the secondary currents towards the troughs were significantly weak compared with the measured data.

Evaluation of Nonlinear Models on Predicting Turbulence-Driven Secondary Flow (난류에 의해 야기되는 이차유동 예측에 관한 비선형 난류모형의 평가)

  • Myong, Hyon-Kook
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1814-1820
    • /
    • 2003
  • Nonlinear relationship between Reynolds stresses and the rate of strain of nonlinear ${\kappa}-{\epsilon}$ models is evaluated theoretically by using the boundary layer assumptions against the turbulence-driven secondary flows in noncircular ducts and then their prediction performance is validated numerically through the application to the fully developed turbulent flow in a square duct. Typical predicted quantities such as mean axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared with available experimental data. The nonlinear model adopted in a commercial code is found to be unable to predict accurately duct flows with the prediction level of secondary flows one order less than that of the experiment.

  • PDF

Numerical Analysis of Subsurface Flow in a Hillslope (자연 구릉지에서 지표하 흐름의 수치해석)

  • 최은호;남선우
    • Water for future
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 1991
  • The governing equation of flow in porous media is developed on the bases of the continuity equation of fluid for transient flow through a saturated-unsaturated zone, and substitution of Darcy's law. The numerical solutions are obtained by finite element method based on the Galerkin principles weighted residuals. The analysis are carried out by using the unsteady storm data observed and rainfall intensities which are obtained by using the rainfall excess model in considering of the initial losses. The functional relationships between the hydraulic conductivity, capillary pressure head and volumetric water content are applied to the flow of water through unsaturated soil varied with changes of water content.

  • PDF

Development of an anisotropic spatial interpolation method for velocity in meandering river channel (비등방성을 고려한 사행하천의 유속 공간보간기법 개발)

  • You, Hojun;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.455-465
    • /
    • 2017
  • Understanding of the two-dimensional velocity field is crucial in terms of analyzing various hydrodynamic and fluvial processes in the riverine environments. Until recently, many numerical models have played major roles of providing such velocity field instead of in-situ flow measurements, because there were limitations in instruments and methodologies suitable for efficiently measuring in the broad range of river reaches. In the last decades, however, the advent of modernized instrumentations started to revolutionize the flow measurements. Among others, acoustic Doppler current profilers (ADCPs) became very promising especially for accurately assessing streamflow discharge, and they are also able to provide the detailed velocity field very efficiently. Thus it became possible to capture the velocity field only with field observations. Since most of ADCPs measurements have been mostly conducted in the cross-sectional lines despite their capabilities, it is still required to apply appropriate interpolation methods to obtain dense velocity field as likely as results from numerical simulations. However, anisotropic nature of the meandering river channel could have brought in the difficulties for applying simple spatial interpolation methods for handling dynamic flow velocity vector, since the flow direction continuously changes over the curvature of the channel shape. Without considering anisotropic characteristics in terms of the meandering, therefore, conventional interpolation methods such as IDW and Kriging possibly lead to erroneous results, when they dealt with velocity vectors in the meandering channel. Based on the consecutive ADCP cross-sectional measurements in the meandering river channel. For this purpose, the geographic coordinate with the measured ADCP velocity was converted from the conventional Cartesian coordinate (x, y) to a curvilinear coordinate (s, n). The results from application of A-VIM showed significant improvement in accuracy as much as 41.5% in RMSE.

Numerical Investigations of Vorticity Generation in Fully Vegetated Open-Channel Flows (수치모의를 이용한 전단면 식생 수로에서의 와도 생성 분석)

  • Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.179-189
    • /
    • 2010
  • This paper presents a numerical investigation of vorticity generation in fully vegetated open-channel flows. The Reynolds stress model is used for the turbulence closure. Open-channel flows with rough bed-smooth sidewalls and smooth bed-rough sidewalls are simulated. The computed vectors show that in channel flows with rough bed and rough sidewalls, the free-surface secondary currents become relatively smaller and larger, respectively, compared with that of plain channel flows. Also, open-channel flows over vegetation are simulated. The computed bottom vortex occupies the entire water depth, while the free-surface vortex is reduced. The contours of turbulent anisotropy and Reynolds stress are presented with different density of vegetation. The budget analysis of vorticity equation is carried out to investigate the generation mechanism of secondary currents. The results of the budget analysis show that in plain open-channel flow, the production by anisotropy is important in the vicinity of the wall and free-surface boundaries, and the production by Reynolds stress is important in the region away from the boundaries. However, this rule is not effective in vegetated channel flows. Also, in plain channel flows, the vorticity is generated mainly in the vicinity of the free-surface and the bottom, while in vegetated channel flows, the regions of the bottom and vegetation height are important to generate the vorticity.

열량계 채널에 대한 3차원 열전달 해석

  • Park, Tae-Seon;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.142-150
    • /
    • 2003
  • Turbulent flows and related heat transfer in a square heated duct is investigated by a turbulence model and a large eddy simulation. The cooling channel of calorimeter is modeled to the square duct. The nonlinear k-ε-fμ model of Park et al. [3] is slightly modified and their explicit heat flux model is employed. The Reynolds number is varied in the range 4000≤Reb≤20000. The heat transfer is closely linked to the secondary flows which driven by the turbulent motion. Its magnitude is 1~3% of the mean streamwise velocity. The relation of Nu~Re0.8Pr0.34 is validated by comparing with the predicted Nu of k-ε-fμ model. Finally, the coherent structures and thermal fluctuations are scrutinized.

  • PDF

A Study on the Development of Low Reynolds Number Second Moment Turbulence Model (저레이놀즈수 2차 모멘트 난류모형 개발에 관한 연구)

  • 김명호;최영돈;신종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1596-1608
    • /
    • 1993
  • Low Reynolds number second moment turbulence model which be applicable to the fine gird near the wall region was developed. In this model, turbulence model coefficients in the pressure strain model of the Reynolds stress equation was expressed as functions of turbulence Reynolds number $R_{t}\equivk^{2}/(\nu\varepsilon)).$ In the derivation procedure of the present low Reynolds number algebraic stress model, Laufer's near wall experimental data on Reynolds stresses were curve fitted as functions of R$_{t}$ and the resulting simultaneous equations of the model coefficients were solved by using the boundary conditions at wall and high Reynolds number limiting conditions. Predicted Reynolds stresses and dissipation rate of turbulent kinetic energy etc. in the 2 dimensional parallel, plane channel flow and pipe flow were compared with the preditions obtained by employing the Launder-Shima model, standard algebraic stress model and several experimental data. Results show that all the Reynolds stresses and dissipation rate of turbulent kinetic energy predicted by the present low Reynolds number algebraic stress model agree better with the experimental data than those predicted by other algebraic stress models.

Numerical Determination of Lateral Loss Coefficients for Subchannel Analysis in Nuclear Fuel Bundles (핵 연료집합체 부수로 해석을 위한 횡 방향 압력손실계수의 수치적 결정)

  • Kim, Sin;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.491-502
    • /
    • 1995
  • In accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number k-$\varepsilon$ turbulence model has been adopted in too adjacent subchannels with cross-flow. The secondary flow is accurately estimated by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity Held in such subchannel domain, an analytical correlation of the lateral loss coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral How velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.

  • PDF

Statistical property of the velocity dispersion profiles of elliptical galaxies : dark matter versus MOND

  • Gong, In-Taek;Chae, Kyu-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.44.2-44.2
    • /
    • 2015
  • 운동학적으로 측정된 질량과 측광으로 측정된 질량이 불일치하는 질량 불일치 문제는 현대천문학의 중요한 문제이다. 현재 이러한 질량 불일치에 대한 두 가지 해결책이 제시 되었다. 하나는 현대 표준우주론인 ${\Lambda}CDM$ 패러다임의 핵심 요소인 암흑물질, 다른 하나는 Milgrom에 의해 제시된 수정된 뉴턴역학(Modified Newtonian dynamics: MOND)이다. 두 방법에 대한 많은 연구가 진행되었는데, 최근 연구 결과에 의하면 나선형 은하의 회전속도 윤곽은 MOND와 잘 부합한다. 여기서 우리는 타원형 은하의 속도분산 윤곽을 분석한다. 속도분산 비등방성의 다양한 가정 하에 거의 구형인 2000여개의 SDSS 은하들의 예측되는 속도분산 윤곽을 계산하고, 이들로부터 얻어진 속도분산 기울기 분포를 15개의 $ATLAS^{3D}$ 구형 은하들의 관측된 분포와 비교하였다. 잘 정의된 하나의 interpolation function을 사용하는 MOND 모형에 의해서 단지 관측된 은하의 항성 질량 분포만으로 관측된 속도 분산 윤곽의 기울기 분포가 잘 설명되었다. 이러한 결과는 표준 패러다임의 경우 관측된 속도 분산 윤곽을 설명하기 위해 개별적인 암흑물질의 양과 밀도 윤곽을 필요로 한다는 점에서 주목할 만하다. 향후 타원형 은하들의 개별적 속도분산 윤곽을 정밀하게 분석하는 것이 매우 유용할 것으로 판단된다.

  • PDF