• Title/Summary/Keyword: 비대칭분포 하중 작용 시

Search Result 3, Processing Time 0.017 seconds

A Study on Calculating the Optimal Monitoring Point when a Asymmetrically Distributed Load is Applied to a Single-track Tunnel Lining (단선터널 라이닝에 비대칭 분포하중 작용 시 최적 계측 측점수 산정연구)

  • Woo, Jong-Tae
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.249-250
    • /
    • 2023
  • 본 논문은 단선터널 라이닝에 비대칭 분포하중 작용 시 최적 계측 측점수를 산정하기 위해 단선터널 라이닝에 작용하는 하중조건을 비대칭 분포하중이 작용하는 경우로 가정하여 터널해석 시 널리 사용되는 상용 프로그램에 하중조건을 입력시켜 터널 라이닝의 단면 위치별 변위와 응력을 산출하였다. 산출된 변위를 계측 측점 3점, 5점, 7점으로 단선터널 라이닝 역해석 프로그램에 입력시켜서 구한 응력과 변위를 비교하여 단선터널 라이닝의 최적 계측 측점수를 산정한 결과 정확도는 측점 3점이 낮고, 측점 5점과 7점이 높으며, 현장 적용성은 측점 5점이 높은 것으로 해석되어 터널 계측 실무와 일치하는 것으로 나타났다.

  • PDF

A study on the estimation of the optimal number of monitoring points in single-track tunnel lining with the inverse analysis program (역해석 프로그램에 의한 단선터널 라이닝의 최적 계측 측점수 산정 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • In order to determine the optimal number of monitoring points in single-track tunnel lining, this thesis compares and evaluates the results of two cases: when the tunnel lining is modeled into a simple beam form and then is applied to 1) the tunnel lining inverse analysis program, and to 2) the commercially-used program. The displacement and stress of specific tunnel lining cross-sections are determined by entering the load conditions into the commercially-used program for tunnel interpretations. In doing so, two cases were assumed: where a symmetrically-distributed load was acting upon the tunnel lining of a single-track tunnel and where an asymmetrically-distributed load was in action. By comparing the computed displacement with the stress and displacement determined by entering side numbers 3, 5, and 7 into the tunnel lining inverse analysis program, the optimal number of monitoring points is determined. From the results of the research, it can be inferred that the number of monitoring points needs to be at least 5 points, considering the efficiency of monitoring in practice and the loss-and-damage rate of tunnel monitoring.

Behavior of Reinforced Concrete Inclined Column-Beam Joints (철근콘크리트 경사기둥-보 접합부의 거동)

  • Kwon, Goo-Jung;Park, Jong-Wook;Yoon, Seok-Gwang;Kim, Tae-Jin;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.147-156
    • /
    • 2012
  • In recent years, many high-rise buildings have been constructed in irregular structural system with inclined columns, which may have effect on the structural behavior of beam-column joints. Since the external load leads to shear and flexural forces on the inclined columns in different way from those on the conventional vertical columns, failure mode, resistant strength, and ductility capacity of the inclined column-beam joints may be different than those of the perpendicular beam-column joints. In this study, six RC inclined beam-column joint specimens were tested. The main parameter of the specimens was the angle between axes of the column and beam (90, 67.5, and 45 degree). Test results indicated that the structural behavior of conventional perpendicular beam-column joint was different to that of the inclined beam-column joints, due to different loading conditions between inclined and perpendicular beam-column joints. Both upper and lower columns of perpendicular beam-column joints were subjected to compressive force, while the upper and lower columns of the inclined beam-column joints were subjected to tensile and compressive forces, respectively.