• Title/Summary/Keyword: 비대역폭

Search Result 105, Processing Time 0.018 seconds

Study on Bandwidth and Characteristic Impedance of CWP3DCS (Coplanar Waveguide Employing Periodic 3D Coupling Structures) for the Development of a Radio Communication FISoC (Fully-integrated System on Chip) Semiconductor Device (완전집적형 무선통신 SoC 반도체 소자 개발을 위한 주기적인 3차원 결합구조를 가지는 코프레너 선로에 대한 대역폭 및 임피던스 특성연구)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.179-190
    • /
    • 2022
  • In this study, we investigated the characteristic impedance and bandwidth of CPW3DCS (coplanar waveguide employing periodic 3D coupling structures), and examined its potential for the development of a marine radio communication FISoC (fully-integrated system on chip) semiconductor device. To extract bandwidth and characteristic impedance of the CPW3DC, we induced a measurement-based equation reflecting measured insertion loss, and compared the measured results of the propagation constant β and characteristic impedance with the measured ones. According to the results of the comparison, the calculated results show a good agreement with the measured ones. Concretely, the propagation constant β and characteristic impedance exhibited an maximum error of 3.9% and 6.4%, respectively. According to the results of this study, in a range of LT = 30 ~ 150 ㎛ for the length of periodic structures, the CPW3DC exhibited a passband characteristic of 121 GHz, and a very small dependency of characteristic impedance on frequency. We could realize a low impedance transmission line with a characteristic impedance lower than 20 Ω by using CPW3DCS with a line width of 20 ㎛, which was highly reduced, compared with a 3mm line width of conventional transmission line with the same impedance. The characteristic impedance was easily adjusted by changing LT. The above results indicate that the CPW3DC can be usefully used for the development of a wireless communication FISoC (fully-integrated system on chip) semiconductor device. This is the first report of a study on the bandwidth of the CPW3DC.

OQ2PSK Modulation with Overlapped Raised-Cosine Pulse Shaping (중첩 상승여현 펄스 정형 OQ2PSK 변조)

  • Jeon, Sang Yeop;Chung, Jae-Kyung;Kim, Myoung Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.7-16
    • /
    • 2015
  • The transmitter of quadrature multiplexed GMSK (QM-GMSK) is composed of two quadrature multiplexed GMSK modulators. QM-GMSK has a slightly increased spectrum main lobe compared with $Q^2PSK$ or QMSK, but it has highly suppressed side lobes. As a result, practical spectrum efficiency of QM-GMSK is achieved. By replacing the baseband elementary pulses of QM-GMSK with their approximate, the squared sinusoid of half-period, offset-$Q^2PSK$($OQ^2PSK$) is obtained. The $OQ^2PSK$ signal has similar spectral properties to QM-GMSK. The transmitter of $OQ^2PSK$ can be simply implemented without the Gaussian lowpass filter, which is required in QM-GMSK transmitter. In this paper, we propose an overlapped pulse shaping in $OQ^2PSK$ with RC(raised-cosine) or SRC(squared raised-cosine) pulses of length longer than the symbol period. Power spectrum of the proposed modulation scheme exhibits further suppressed side lobes, hence enhanced spectrum efficiency is obtained. Simulation results indicate that BER performance of the proposed scheme is comparable to that of $OQ^2PSK$.

A Study on the Fabrication of the 4 Port In-Phase High Power Combiner (4포트 동위상 고출력 전력결합기의 구현에 관한 연구)

  • Lee, Young-Sub;Jeon, Joong-Sung;Lee, Seok-Jeong;Ye, Byeong-Duck;Kim, Dong-Il;Hong, Tchang-Hee
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.289-294
    • /
    • 2002
  • The broadband high power 3-way combiner was designed and fabricated for the digital TV repeater. To achieve increase of the bandwidth and the high power capability, Wilkinson type power divider was adopted in our research. First of all, Wilkinson type power divider of equal-split and unequal-split were combined, and the characteristics of the four port in-phase power combiner was simulated for each thickness of dielectric substrates. As the results of simulation, the power combiner fabricated by using dielectric substrate of 120 mil-thickness has the characteristics as follows: insertion loss of less than -651 dB, reflection coefficient of less than -13 dB, isolation among the output ports of less than -15 dB, and pose difference among the output ports of smiler than 13$^{\circ}$. Therefore, this power combiner was possible to improve the limit of microstrip line width due to high impedance, the problem of power loss due to interaction between strip lines in a high power combiner and narrow bandwidth simultaneously. Furthermore, making broadband and high power could be achieved since the fabricated 3-way combiner has good characteristics of insertion loss, the reflection coefficient, separation between ports, and phase difference.

Design of High-Speed Multi-Layer PCB for Ultra High Definition Video Signals (UHD급 영상구현을 위한 다층인쇄회로기판의 특성 임피던스 분석에 관한 연구)

  • Jin, Jong-Ho;Son, Hui-Bae;Rhee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1639-1645
    • /
    • 2015
  • In UHD high-speed video transmission system, when a signal within certain frequency region coincides electrically and structurally, the system becomes unstable because the energy is concentrated, and signal flux is interfered and distorted. For the instability, power integrity analysis should be conducted. To remove the signal distortion for MLB, using a high-frequency design technique for EMI phenomenon, EMI which radiates electromagnetic energy fluxed into power layer was analyzed considering system stabilization. In this paper, we proposed an adaptive MLB design method which minimizes high-frequency noise in MLB structure, enhances signal integrity and power integrity, and suppresses EMI. The characteristic impedance for multi-layer circuit board proposed in this study were High-Speed Video Differential Signaling(HSVDS) line width w = 0.203, line gap d = 0.203, beta layer height h = 0.145, line thickness t = 0.0175, dielectric constant εr = 4.3, and characteristic impedance Zdiff = 100.186Ω. When high-speed video differential signal interface board was tested with optimized parameters, the magnitude of Eye diagram output was 672mV, jittering was 6.593ps, transmission frequency was 1.322GHz, signal to noise was 29.62dB showing transmission quality improvement of 10dB compared to previous system.

Evaluation of Spectral Band Adjustment Factor Applicability for Near Infrared Channel of Sentinel-2A Using Landsat-8 (Landsat-8을 활용한 Sentinel-2A Near Infrared 채널의 Spectral Band Adjustment Factor 적용성 평가)

  • Nayeon Kim;Noh-hun Seong;Daeseong Jung;Suyoung Sim;Jongho Woo;Sungwon Choi;Sungwoo Park;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.363-370
    • /
    • 2023
  • Various earth observation satellites need to provide accurate and high-quality data after launch. To maintain and enhance the quality of satellite data, it is crucial to employ a cross-calibration process that accounts for differences in sensor characteristics, such as the spectral band adjustment factor (SBAF). In this study, we utilized Landsat-8 and Sentinel-2A satellite imagery collected from desert sites in Libya4, Algeria3, and Mauritania2 among pseudo-invariant calibration sites to calculate and apply SBAF, thereby compensating the uncertainties arising from variations in bandwidths. We quantitatively compared the reflectance differences based on the similarity of bandwidths, including Blue, Green, Red, and both the near-infrared (NIR) narrow, and NIR bands of Sentinel-2A. Following the application of SBAF, significant results with reflectance differences of approximately 1% or less were observed for all bands except NIR. In the case of the Sentinel-2A NIR band, it exhibited a significantly larger bandwidth difference compared to the NIR narrow band. However, after applying SBAF, the reflectance difference fell within the acceptable error range (5%) of 1-2%. It indicates that SBAF can be applied even when there is a substantial difference in the bandwidths of the two sensors, particularly in situations where satellite utilization is limited. Therefore, it was determined that SBAF could be applied even when the bandwidth difference between the two sensors is large in a situation where satellite utilization is limited. It is expected to be helpful in research utilizing the quality and continuity of satellite data.