• Title/Summary/Keyword: 비다공성

Search Result 492, Processing Time 0.029 seconds

A Study on the Migration Characteristics of Cs-137 in a Packed Column (충전층에서의 세슘-137의 이동특성에 관한 연구)

  • Lee, Jae-Owan;Cho, Won-Jin;Han, Kyung-Won;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 1990
  • In this study the migration experiment using packed column with crushed tuff was conducted as a basic research to develop migration model of radionuclides through geologic media. The main emphasis was put on evaluating the validity of migration models. For this, two models were introduced: one is the model which is based on the assumption of instantaneous equilibrium reaction and the other the model based on kinetic process such as intraparticle diffusion. The coefficient of hydrodynamic dispersion in packed column was determined using iodine as nonsorbing tracer. The hydrodynamic dispersion coefficient, D$_{L}$ was shown to be 0.11$\times$10$^{-2}$ $\textrm{cm}^2$/min under the condition of the column porosity of 0.483 and the average water velocity of 0.915$\times$10$^{-2}$ cm/min. The distribution coefficient, Kd of Cs-137 on crushed tuff was 11.3 cc/g at the concentration of 2$\times$10$^{-6}$ M and the temperature of 2$0^{\circ}C$. The breakthrough curve of Cs-137 through packed column was shown to have an asymmetric curve in which long trailing tail appears at the end part of the curve. The results obtained from the comparison of introduced models with experimental data indicated that the mass transfer model with intraparticle diffusion as rate-controlling step simulated the behaviors of Cs-137 migration more adequately, when compared with the bulk reaction model in which the assumption of instantaneous equilibrium reaction was maded. Consequently, the intraparticle diffusion was found to be an important factor in the migration of Cs-137 through packed column.n.

  • PDF

Research Trends on Hydrocarbon-Based Polymer Electrolyte Membranes for Direct Methanol Fuel Cell Applications (직접 메탄올 연료전지용 탄화수소계 고분자 전해질 막 연구개발 동향)

  • Yu-Gyeong Jeong;Dajeong Lee;Kihyun Kim
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.325-343
    • /
    • 2023
  • Direct methanol fuel cells (DMFCs) have been attracting attention as energy conversion devices that can directly supply methanol liquid fuel without a fuel reforming process. The commercial polymer electrolyte membranes (PEMs) currently applied to DMFC are perfluorosulfonic acid ionomer-based PEMs, which exhibit high proton conductivity and physicochemical stability during the operation. However, problems such as high methanol permeability and environmental pollutants generated during decomposition require the development of PEMs for DMFCs using novel ionomers. Recently, studies have been reported to develop PEMs using hydrocarbon-based ionomers that exhibit low fuel permeability and high physicochemical stability. This review introduces the following studies on hydrocarbon-based PEMs for DMFC applications: 1) synthesis of grafting copolymers that exhibit distinct hydrophilic/hydrophobic phase-separated structure to improve both proton conductivity and methanol selectivity, 2) introduction of cross-linked structure during PEM fabrication to reduce the methanol permeability and improve dimensional stability, and 3) incorporation of organic/inorganic composites or reinforcing substrates to develop reinforced composite membranes showing improved PEM performances and durability.

Preparation of nanosized NiO powders by mixing acid and base nickel salts and their reduction behavior (Ni 산성염과 Ni 염기성 염의 혼합에 의한 나노 NiO 분말 제조 및 이의 환원 특성)

  • Kim, Chang-Sam;Yun, Dong-Hun;Jeon, Sung-Woon;Kwon, Hyok-Bo;Park, Sang-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.283-288
    • /
    • 2010
  • Nanosized NiO powder was prepared by mixing an acid nickel salt and a base nickel salt and their reduction behavior was studied. Ni formate was employed as an acid salt and nickel hydroxide and basic nickel carbonate as base salts. One equivalent acid salt was mixed with 9 equivalent base salt. The mixture of the formate and the carbonate produced ~100 run spherical NiO powder by heat treatment at $750^{\circ}C$/2 h, but the mixture of the formate and the hydroxide gave rise to ~100 nm pseudo spherical NiO powder by heat treatment at $600^{\circ}C$/2 h and grew fast to give pseudo cubic crystals of 100~600 run by heat treatment at $750^{\circ}C$/2 h. Reduction by hydrogen gas proceeded much faster for the one with the hydroxide than that with the carbonate to give porous body with well grown necks. Their behavior was studied by analysis of TG/DSC, XRD, and SEM.

금 나노로드 어레이 박막을 이용한 광학형 바이오 센서 개발

  • Yeom, Se-Hyeok;Lee, Dong-Ik;Sin, Han-Jae;Seo, Chang-Taek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.436-436
    • /
    • 2014
  • 본 연구에서는 전 세계적으로 활발히 연구되고 있는 나노바이오센서 분야 중 가장 주목을 받고 있는 LSPR 원리를 이용한 바이오센서를 제작하였다. 금속 나노입자의 국소 표면 플라즈몬 공명현상에 의한 주위환경에 민감하게 반응하는 특성은 고감도 광학형 바이오센서, 화학물질 검출 센서등에 응용된다. 특히 금 나노막대와 같은 1차 나노구조물은 나노막대의 주변 환경 변화에 따라 뚜렷한 플라즈몬 흡수 밴드 변화를 나타냄으로 센서로 적용 했을 때 고감도의 측정이 가능하다. 본 연구에서는 다공성인 알루미늄 양극산화 박막 주형틀을 이용하여 다양한 종횡비를 가지는 금 나노막대를 합성하고, 나노막대 어레이 형태의 박막을 제작하였다. 금 나노막대의 합성은 알루미늄 양극산화막을 사용한 주형제조 방법(template method)을 사용하는 전기화학 증착법을 사용하였다. 우선 부도체인 알루미늄 양극 산화막의 한쪽면을 열증착 장비를 사용하여 금을 증착하여 작업 전극(working electrode)을 형성하였다. 백금 선(platinum wire)을 보조 전극(counter electrode)으로 사용하고 Ag/AgCl 전극을 기준 전극(reference electrode)으로 사용하여 삼전극계(three-electrode system)를 형성하였으며, 금 도금 용액(orotemp 24 gold plating solution, TECHNIC INC.)을 사용하여, 800 mV 전압에서 금 나노 막대를 합성하였다. 금 나노막대의 길이는 테플론 챔버를 통과한 전하량 또는 전기 증착 시간에 비례하여 결정된다. 금 나노막대를 성장시킨 알루미늄 양극산화막을 실리콘 웨이퍼에 은 페이스트를 사용하여 고정시킨 후 수산화나트륨 (NaOH)용액을 사용하여 알루미늄 양극산화막을 녹여내어 수직방향으로 정렬되어 있는 나노 막대 어레이 박막을 제조 하였다. 또한 제작된 금 나노막대 어레이의 광학적 특성을 평가하였다. 본 연구에서와 같이 나노막대를 직경방향으로 측정할 경우, 직경방향의 transverse mode만 측정된다. 금 나노 막대가 알루미늄 양극산화막 안에 포함된 상태로 측정된 금 나노로드 어레이 박막의 광 스펙트럼 분포는 금 나노막대의 가시광영역에서의 흡수 스펙트럼을 측정하였을시 직경 및 길이에 따라 transverse mode의 ${\lambda}$ max (최대 흡광)의 위치가 변화됨을 나타낸다. 실험 결과를 바탕으로 나노막대의 종횡비가 증가함에 따라 흡수 스펙트럼의 transverse mode ${\lambda}$ max가 미약하게 단파장 영역으로 이동하는 것을 확인할 수 있다. 이러한 결과는 원기둥 형태의 금 나노막대의 흡수 스펙트럼에 대한 이론적인 예측과 부합한다. 바이오센서로의 적용 가능성을 확인하기 위하여 자기조립단분자막을 형성하여 항체를 고정하고 CRP에 대한 응답특성을 평가하였다. CRP 항원-항체의 면역반응에 대한 실험 결과 CRP 항원의 농도가 증가함에 따라 넓은 측정범위에서 선형적으로 흡광도가 증가하는 결과를 나타내었으며, CRP 10 fg/ml의 농도까지 검출할 수 있었다. 센서의 선택성을 확인하기 위하여 감지하고자하는 대상물질이 아닌 Tn T 항원을 감지막에 반응시켜 흡광도 변화를 분석하였다. 결과적으로 제작된 센서칩은 선택성을 가지고 측정하고자하는 물질에만 반응함을 확인하였다. 이러한 결과는 다양한 직경을 사용한 부가적인 LSPR현상의 연구에 활용될 수 있을 것이다.

  • PDF

A study on surface modification of Ag powder for developing latent fingerprints (잠재지문 현출용 나노 은 분말의 표면개질에 대한 연구)

  • Kim, Man-Ki;Choi, Mi-Jung;Jeon, Chung-Hyun;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.216-223
    • /
    • 2010
  • In previous research, results on efficiency versus size and type of Ag particles showed similarity of detection efficiency comparing the particles of flake and spherical type with the gray particle on the market and in the case of nAg (rod, $0.9\;{\mu}m$) particle, relatively good results was given in the various evaluation methods for detection efficiency of latent fingerprint. However, oxidation was occurred when nAg particles laying on nature condition for a month and due to water absorption, detection efficiency was decreased. Therefore, with need to prevent oxidation and water absorption, more research is necessary. In this research, surface modification on nAg particles using silicon oil was conducted in various methods for complementing weakness of oxidation and water absorption. Then detection efficiency of nAg particles and surface modified nAg particles was evaluated by the number of feature points on the surface of non-porous materials (glass, plastic etc.) and degree of particle adhesion with ridges and contrast of detected fingerprint. Improvement of preventing oxidation and water absorbtion was given by surface modification using silicon oil (DC200, 0.5%) on the surface of non-porous materials.

Capability of CO2 on Metal-Organic Frameworks-Based Porous Adsorbents and Their Challenges to Pressure Swing Adsorption Applications (금속-유기 골격계 다공성 흡착제의 이산화탄소 흡착성능과 압력순환흡착 공정 적용의 문제점)

  • Kim, Moon Hyeon;Choi, Sang Ok;Choo, Soo Tae
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.370-378
    • /
    • 2013
  • This review has shown the capability of MOFs and ZIFs materials to adsorb $CO_2$ under typical PSA temperatures and pressures. The usual operating conditions are adsorption temperatures of $15{\sim}40^{\circ}C$ and adsorption pressures of 4~6 bar based on numerous PSA processes which are widely employed in gases industry for adsorptive separation of $CO_2$. The extent of $CO_2$ adsorption on the microporous materials depends on the metal species and organic linkers existing in the frameworks. The pore size and the surface area, and the process variables are the key parameters to be associated with the efficiency of the adsorbents, particularly adsorption pressures if other variables are comparable each other. The MOFs and ZIFs materials require high pressures greater than 15 bar to yield significant $CO_2$ uptakes. They possess a $CO_2$ adsorption capacity which is very similar to or less than that of conventional benchmark adsorbents such as zeolites and activated carbons. Consequently, those materials have been much less cost-effective for adsorptive $CO_2$ separation to date because of very high production price and the absence of commercially-proven PSA processes using such new adsorbents.

Characteristics of Water Gas Shift and Membrane Process for Pre-combustion CO2 Capture (연소전 CO2 포집을 위한 수성가스반응과 분리막 공정 특성)

  • Kim, Jeong-Nam;You, Jong-Kyun;Choi, Soo-Hyun;Baek, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Global warming due to greenhouse gas emissions is considered as a major problem worldwide, and many countries are making great efforts to reduce carbon dioxide emissions. Many technologies in post-combustion, pre-combustion and oxy-fuel combustion $CO_2$ capture have been developed. Among them, a hybrid pre-combustion $CO_2$ capture system of a water gas shift (WGS) reactor and a membrane gas separation unit was investigated. The 2 stage WGS reactor integrated high temperature shift (HTS) with a low temperature shift (LTS) was used to obtain a higher CO conversion rate. A Pd/Cu dense metal membrane was used to separate $H_2$ from $CO_2$ selectively. The performance of the hybrid system in terms of CO conversion and $H_2$ separation was evaluated using a 65% CO, 30 % $H_2$ and 5% $CO_2$ gas mixture for applications to pre-combustion $CO_2$ capture. The experiments were carried out over the range of WGS temperatures ($200-400^{\circ}C$), WGS pressures (0-20bar), Steam/Carbon (S/C) ratios (2.5-5) in a feed gas flow rate of 1 L/min. A very high CO conversion rate of 99.5% was achieved with the HTS-LTS 2 stage water gas shift reactor, and 83% $CO_2$ was concentrated in the retentate using the Pd/Cu membrane.

Three-Dimensional Culture of Thymic Epithelial Cells Using Porous PCL/PLGAComposite Polymeric Scaffolds Coated with Polydopamine (폴리도파민으로 코팅된 다공성 PCL/PLGA 복합 폴리머 지지체를 이용한 흉선상피세포의 3차원 세포배양)

  • Seung Mi Choi;Do Young Lee;Yeseon Lim;Seonyeong Hwang;Won Hoon Song;Young Hun Jeong;Sik Yoon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.612-622
    • /
    • 2023
  • T-cell deficiency may occur in various clinical conditions including congenital defects, cell/organ transplantation, HIV infection and aging. In this regard, the development of artificial thymus has recently been attracting much attention. To achieve this aim, the development of techniques for 3D culture of thymic stromal cells is necessary because thymocytes grown only in a 3D thymic microenvironment can be differentiated fully to become mature, immunocompetent T cells; the same cannot be achieved for thymocytes grown in 2D. This study aimed to develop a nanotechnology-based 3D culture technique using polymeric scaffolds for thymic epithelial cells (TECs), the main component of thymic stromal cells. Scanning electron microscopic observation revealed that the pores of both PCL and PCL/PLGA scaffolds were filled with TECs. Interestingly, TECs grown in 3D on polydopamine-coated scaffolds exhibited enhanced cell attachment and proliferation compared to those grown on non-coated scaffolds. In addition, the gene expression of thymopoietic factors was upregulated in TECs cultured in 3D on polydopamine-coated scaffolds compared to those cultured in 2D. Taken together, the results of the present study demonstrate an efficient 3D culture model for TECs using polymeric scaffolds and provide new insights into a novel platform technology that can be applied to develop functional, biocompatible scaffolds for the 3D culture of thymocytes. This will eventually shed light on techniques for the in vitro development of T cells as well as the synthesis of artificial thymus.

Assessment of Wicking and Fast Dry Properties According to Moisture Transport Measurement Method of Knit and Woven Fabrics for Garment (의류소재용 직·편물의 수분이동 특성 측정 방법에 따른 흡한속건성 평가)

  • Kim, Hyun-ah;Kim, Seung-jin
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.117-126
    • /
    • 2017
  • In this study, moisture transport characteristics for the woven and knitted fabrics made of 8 kinds of fiber materials using MMT (moisture management tester) were measured and discussed with the Bireck bt MMT and water evaporating rate (WER) measuring methods, which are vertical moisture transport methods. In addition, the drying property by MMT of the eight kinds of specimens was compared and discussed with the results measured by the vertical drying measurement. MMT experimental result which is horizental moisture transport appeared to be similar to the result of the Bireck method, which is the vertical moisture transport experiment. Absortion time measured from drip method of the fabrics made of the bamboo, linen, and cotton/nylon composite fabrics was short and thus they showed best wicking property, which was attributed to the low contact angle on the fabric surface and high porosity of the fabrics due to the staple yarn structure composed of the hydrophilic staple fibers. In drying property of the fabric specimens by MMT, maximum absorption radius of the dry-zone knit and bamboo woven fabrics were the highest and they showed the best drying property, which was a little different result compared with vertical drying measurement method. Half time of the drying rate in the MMT method was highly correlated with the fabric thickness and saturated moisture absortion rate and their regression coefficients were 0.9 and 0.88, respectively. This means that the knitted and woven fabric design technology for retaining good wicking and drying properties of the fabrics with thin fabric thickness is very important for obtaining high functional wear comfort fabrics. In addition, wicking and drying properties of the fabrics made of different fiber materials and with different yarns and fabric structures showed different results according to the measuring methods.

Accelerated Degradation Test and Failure Analysis of Rapid Curing Epoxy Resin for Restoration of Cultural Heritage (문화재 복원용 속(速)경화형 Epoxy계 수지의 가속열화시험 및 고장분석 연구)

  • Nam, Byeong Jik;Jang, Sung Yoon
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.467-483
    • /
    • 2017
  • In this study, the degradation properties by temperature stress of $Araldite^{(R)}$ rapid-curing epoxy resin used for inorganic cultural heritages, was identified. The tensile and tensile shear strength of durability decreased for 12,624 hours at temperatures of $40{\sim}60^{\circ}C$. In terms of stability of external stress and temperature, the slow-curing epoxy was superior to the rapid-curing epoxy, and cultural heritage conservation plans should therefore consider the strength and stress properties of restoration materials. Color differences increased for 12,624 hours at temperatures of $40{\sim}60^{\circ}C$, and glossiness decreased. Both color and gloss stability were weak, which necessitates the improvement of optical properties. Thermal properties (weight loss, decomposition temperature, and glass transition temperature) of adhesives are linked to mechanical properties. Interfacial properties of the adherend and water vapor transmission rates of adhesives are linked to performance variation. For porous media (ceramics, brick, and stone), isothermal and isohumid environments are important. For outdoor artifacts on display in museums, changes in physical properties by exposure to varying environmental conditions need to be minimized. These results can be used as baseline data in the study of the degradation velocity and lifetime prediction of rapid-curing epoxy resin for the restoration of cultural heritages.