• Title/Summary/Keyword: 비균질장

Search Result 66, Processing Time 0.03 seconds

Characteristics for a Mode III Crack Propagating along Interface between Isotropic and Functionally Gradient Material with Linear Property Gradation along X Direction (등방성과 X방향 선형함수구배 재료의 접합계면을 따라 전파하는 모드 III 균열의 특성)

  • Lee Kwang Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1500-1508
    • /
    • 2004
  • Stress and displacement fields for a crack propagating along interface between isotropic material and functionally gradient one with linear property gradation along X direction are developed. The stress and displacement fields are obtained from the complex function of steady plane motion for isotropic and functionally gradient material (FGM). The stresses and displacement in isotropic material of bimaterial are not influenced by nonhomogeneity, however, the fields in FCM are influenced by nonhomogeneity in the terms of higher order, n$\geq$3. When the nonhomogeneous parameter in FGM is zero, or in area close to crack tip, the fields are identical to those of isotropic-isotropic bimaterial. Using these stress components, the effects of nonhomogeneity on stresses are discussed.

CHEMICAL SHIFT IMAGING

  • Yi, Yun;Kim, Min-Gi
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.22-25
    • /
    • 1992
  • Lipid component and water component image in living organism can be acquired due to its chemical shift difference. Various techniques for chemical shift imaging were used for acquiring separated image. It is necessary two imaging experiments to acquire two separated images wi th Dixon's method. This technique is less susceptible to local magnetic inhomogeneities and easily applied to multi-slice imaging. With CHESS and SECSI method, which based on chemical selectivity of R.F pusle, either water or lipid image can be acquired by one imaging experiment. However, those are more susceptible to local magnetic field inhomogeneities and difficult to apply to multi-slice imaging. The SECSI method showed best signal suppression ratio of fat and water, which is measure of separation of water and fat.

  • PDF

고순도게르마늄(HPGe) 검출기를 이용한 방사성폐기물 드럼의 핵종농도 평가

  • 박경록;강덕원
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.583-589
    • /
    • 1996
  • 원자력발전소에서 발생되는 방사성폐기물들은 폐기물형태 및 방사능 농도가 다양하며 영구처분장으로 이송전까지는 발전소내의 임시 저장고에 안전하게 보관, 관리하고 있다. 생성된 폐기물드럼내에는 감마방출핵종을 비롯하여 알파 및 베타방출 핵종들이 균질 또는 비균질하게 존재하고 있으며 방사능의 세기나 폐기물의 특성에 따라 안정화시키거나 압축처리하여 드럼에 담겨져 있기 때문에 일반적인 파괴분석에 의한 화학분석법으로는 작업자의 피폭, 시료의 대표성 선정 및 장시간의 화학처리 시간소요 등으로 핵종분석이 곤란하다. 따라서 본 논문은 일반적으로 감마핵종분석시 흔히 사용하고 있는 고순도게르마늄(HPGe) 검출기를 이용하여 드럼의 감마핵종농도를 분석하는 방법과 장치의 개발에 대해 언급하였으며 알파나 베타핵종과 같이 직접 분석이 곤란한 핵종들은 각 폐기물드럼내에 존재하는 Co-60이나 Cs-137과의 상관관계를 미리 예측한 척도인자 (scaling factor)를 이용하여 간접적으로 구하는 방법을 사용하고 있으나 본 논문에서는 드럼으로부터 감마핵종만을 분석하는 방법에 대해서만 언급하였다. 또한 핵종분석시스템의 최적 운전조건을 도출하기 위해 드럼회전테이블의 속도결정 및 모의드럼을 이용한 방사능측정 등을 통해 핵종 농도 분석시의 오차를 30% 이내로 유지할 수 있었다.

  • PDF

A Numerical Study on Spatial Behavior of Linear Absorbing Solute in Heterogeneous Porous Media (비균질 다공성 매질에서 선형 흡착 용질의 공간적 거동에 대한 수치적 연구)

  • Jeong, Woo Chang;Lee, Chi Hun;Song, Jai Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • This paper presents a numerical study of the spatial behavior of a linear absorbing solute in a heterogeneous porous medium. The spatially correlated log-normal hydraulic conductivity field is generated in a given two-dimensional domain by using the geostatistical method (Turning Bands algorithm). The velocity vector field is calculated by applying the two-dimensional saturated groundwater flow equation to the Galerkin finite element method. The simulation of solute transport is carried out by using the random walk particle tracking model with CD(constant displacement) scheme in which the time interval is automatically adjusted. In this study, the spatial behavior of a solute is analyzed by the longitudinal center-of-mass displacement, longitudinal spatial spread moment and longitudinal plume skewness.

  • PDF

Analysis of Unsteady Propagation of Mode III Crack in Arbitrary Direction in Functionally Graded Materials (함수구배재료에서 임의의 방향을 따라 비정상적으로 전파하는 모드 III 균열해석)

  • Lee, Kwang Ho;Cho, Sang Bong;Hawong, Jai Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.143-156
    • /
    • 2015
  • The stress and displacement fields at the crack tip were studied during the unsteady propagation of a mode III crack in a direction that was different from the property graduation direction in functionally graded materials (FGMs). The property graduation in FGMs was assumed based on the linearly varying shear modulus under a constant density and the exponentially varying shear modulus and density. To obtain the solution of the harmonic function, the general partial differential equation of the dynamic equilibrium equation was transformed into a Laplace equation. Based on the Laplace equation, the stress and displacement fields, which depended on the time rates of change in the crack tip speed and stress intensity factor, were obtained through an asymptotic analysis. Using the stress and displacement fields, the effects of the angled property variation on the stresses, displacements, and stress intensity factors are discussed.

Transient Elastodynamic Mode III Crack Growth in Functionally Graded Materials (함수구배재료에서 천이탄성동적모드 III 균열전파)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.851-858
    • /
    • 2010
  • A generalized elastic solution for a transient mode III crack propagating along the gradient in functionally graded materials (FGMs) is obtained through an asymptotic analysis. The shear modulus and density of the FGMs are assumed to vary exponentially along the gradient. The stress and displacement fields near the crack tip are obtained in terms of powers of radial coordinates, and the coefficients depend on the time rates of the change of the crack tip speed and stress intensity factors. The influence of nonhomogeneity and transients on the higher order terms of the stress and displacement fields is discussed.

A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling (선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.81-93
    • /
    • 2020
  • The fatigue characteristics of glass fiber reinforced plastic (GFRP) composites were studied under repeated loads using the finite element method (FEM). To realize the material characteristics of GFRP composites, Digimat, a mean-field homogenization tool, was employed. Additionally, the micro-structures and material models of GFRP composites were defined with it to predict the fatigue behavior of composites more realistically. Specifically, the fatigue characteristics of polybutylene terephthalate with short fiber fractions of 30wt% were investigated with respect to fiber orientation, stress ratio, and thickness. The injection analysis was conducted using Moldflow software to obtain the information on fiber orientations. It was mapped over FEM concerned with fatigue specimens. LS-DYNA, a typical finite element commercial software, was used in the coupled analysis of Digimat to calculate the stress amplitude of composites. FEMFAT software consisting of various numerical material models was used to predict the fatigue life. The results of coupled analysis of linear and nonlinear material models of Digimat were analyzed to identify the fatigue characteristics of GFRP composites using FEMFAT. Neuber's rule was applied to the linear material model to analyze the fatigue behavior in LCF regimen. Additionally, to evaluate the morphological and mechanical structure of GFRP composites, the coupled and fatigue analysis were conducted in terms of thickness.

2.5 Dimensional EM Modeling considering Horizontal Magnetic Dipole Source (수평 자기쌍극자 송신원을 이용한 2.5차원 전자탐사 모델링)

  • Kwon Hyoung-Seok;Song Yoonho;Son Jeong-Sul;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.84-92
    • /
    • 2002
  • In this study, the new modeling scheme has been developed for recently designed and tested electromagnetic survey, which adapts horizontal magnetic dipole with $1\;kHz\~1\;MHz$ frequency range as a source. The 2.5-D secondary field formulation in wavenumber domain was constructed using finite element method and verified through comparing results with layered-earth solutions calculated by integral equations. 2-D conductive- and resistive-block models were constructed for calculating electric field, magnetic field and impedance - the ratio of electric and magnetic fields which are orthogonal each other. This study showed that electric field and impedance are superior in identifying 2-D isolated-body model to magnetic field. In particular, impedance gives more stable results than electric field with similar spatial resolving power, because electric field is divided by magnetic field in impedance. Thus the impedance analysis which uses electric and magnetic fields together would give better result in imaging the shallow anomalies than conventional EM method.

Numerical Simulajtions of Non-ergodic Solute Transport in Strongly Heterogeneous Aquiferss (불균질도가 높은 대수층내에서의 비에르고딕 용질이동에 관한 수치 시뮬레이션)

  • Seo Byong-Min
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.245-255
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a non-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce the simulation uncertainties. Ensemble averages of the second spatial moments of the plume, $$lt;S_{ij}'(t',l')$gt;$ and plume centroid variances, $$lt;R_{ij}'(t',l')$gt;$ were simulated with 3200 Monte Carlo runs for three variances of log K, $\omega^2_y1.0,,2.5,$ and 5.0, and three dimensionless lengths of line plume sources ( l=,5 and 10) normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are not fit well with the first order results. The first order theoretical results definitely underestimated the simulated transverse second spatial moments for the aquifers of large u: and small initial plume sources. The ergodic condition for the second spatial moments is far from reaching, and the first order theoretical results of the transverse second spatial moment of the ergodic plume slightly underestimated the simulated moments.

Variations of Longitudinal Moments for a Contaminant Transport in Physically and Chemically Heterogeneous Media (물리.화학적 불균질 특성을 지닌 매질 내 오염운 이동시 보이는 종적률 변화)

  • Seo, Byong-Min;Jung, Joon-Oh;Kim, Young-Woo;Hwang, Seung-Min
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.81-88
    • /
    • 2009
  • Two dimensional Monte-Carlo simulations of a non-reactive solute plume in isotropic porous media which are physically and chemically heterogeneous are conducted to determine the variations of moment. Retardation factors of 1, 2 and 5 are given to ascertain how the second moments are changed as adsorption increased. Retarded longitudinal second spatial moment, ${Z_{11}}^{'R}(t',l')$, increased during the transport process and as the dimensionless lengths of line plume source, $l_2'$, increased. ${Z_{11}}^{'R}(t',l')$ decreased as the retardation factors increased, and the simulated moments fit well to the first-order analytical results. Retarded longitudinal plume centroid variance, ${Z_{11}}^{'R}(t',l')$, decreased as the dimensionless lengths of line plume source, $l_2'$, increased and as the retardation factor increased. The result indicates that the uncertainty about the plume center decreased, and the ergodic condition for the second spatial moments is far from reaching. Simulated longitudinal one particle displacement covariance, ${Z_{11}}^{'R}(t')$, well consistent with the first-order analytical results for the three degrees of retardation factors of 1, 2 and 5 respectively. It is, consequently, concluded that the retarded longitudinal second moments could be produced by stochastic simulation, and that the first-order analytical results definitely provides very close values of the longitudinal retarded moments.