• Title/Summary/Keyword: 비구면도

Search Result 473, Processing Time 0.026 seconds

Optical System Design Composed of Spherical SELFOC Lens and Aspherical Plastic Lens for Mobile Phone Camera (1매의 구면 SELFOC 렌즈와 1매의 비구면 플라스틱 렌즈로 구성된 카메라폰용 광학계의 설계)

  • Lee, Yong-Sun;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.108-115
    • /
    • 2008
  • We designed optical systems for a mobile phone camera using a spherical SELFOC lens and an aspherical plastic lens. Since the radial index distribution gives an additional design parameter for optical design, an aspheric lens could be replaced by a spherical lens. The imaging performances of the design were compared with conventional 2P design composed of two aspherical plastic lenses. In the first stage of study, we designed 1GRIN 1P lenses by using commercially available SELFOC materials. But, the conventional 2P lenses had better performance than the 1GRIN 1P lenses. In the 1GRIN 1P designs, the performance depends on index variation of GRIN material, the larger variation gives the better performance. Hence, we tried to design by using fictitious GRIN materials which have large index variation. We found if the index variation could be increased to about 3 times that of currently available SELFOC materials, the 1GRIN 1P lens will have equivalent or better performance than the conventional 2P design.

Large Aspheric Optics and Its Applications (대구경 비구면 광학기술과 응용)

  • Lee, Yun-Woo;Moon, Il Kweon;Kihm, Hagyong;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2013
  • A large aspheric mirror is a key component for large astronomical telescopes and high resolution satellite cameras. Since it is large and has an aspheric form, it is much more difficult to fabricate it compared to the similar size of spherical mirror. Especially, the opto-mechanical design and analysis is critical to reduce the deformation of mirror surface due to the external forces such as gravity or temperature change, as the mirror size is larger and lightweighting ratio is increased. The design requirements for the mirror are different depending on the particular ground and space applications because the environmental conditions are changed. In this paper, we explain the opto-mechanical design and analysis for ground and space applications that are among the most difficult to achieve among several technologies related to development of the large aspheric mirror.

The Comparison of Fluorescein Patterns between Spherical RGP Lens and Aspherical RGP Lens by Corneal Type and Astigmatic Degree (각막형상과 난시도에 따른 구면 RGP 렌즈와 비구면 RGP 렌즈의 플루레신 염색 패턴 비교)

  • Park, Eun Hye;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.1
    • /
    • pp.37-45
    • /
    • 2012
  • Purpose: The change of alignment between RGP lens and cornea according to the lens design was investigated by comparing the areas of fluorescein pattern in central and peripheral regions analyzed by astigmatic degree and corneal type when spherical and aspherical RGP lenses fitted in alignment. Methods: The fluorescein patterns of 90 eyes (19-30 years, $25.12{\pm}3.52$) having with-the-rule astigmatism were analyzed after spherical and aspherical RGP lenses fitted in alignment. Then, their fluorescent areas in central and peripheral regions were calculated and compared for the quantitative evaluation. Results: The case showing concordant base curve between spherical and aspherical RGP lenses in alignment fitting was 72% however, the possibility to have same base curves between spherical and aspherical RGP lenses in alignment fitting was to be less in the case of symmetric bowtietyped cornea and high astigmatism. The fluorescent area in peripheral region of aspherical RGP lens in alignment fitting was smaller than it of spherical RGP lens. Peripheral fluorescent areas in both RGP lenses decreased according to the increase of astigmatic degree and peripheral area in symmetric bowtie-typed corea was smaller than round-typed cornea's peripheral area. In the case of same astigmatic degree, peripheral fluorescent area of aspherical RGP lens was smaller in both corneal types. Conclusions: The results above suggest the changing degree in the alignment between RGP lens and cornea can be varied according to lens design, corneal astigmatism and corneal type. Thus, the results obtained from the quantitative analysis of the alignment between lens design and cornea may be used as the basic information about the establishment of guidelines for RGP lens fitting, the development of proper lens design, and different tear volume in partial regions.

Performance Evaluation and Design of Zoom Lens Systems (Zoom Lens계의 성능 평가 및 설계)

  • Ji, Taek Sang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.113-121
    • /
    • 2002
  • Nowadays, developed camera, camcorder, CCTV and copier system accept a wide angle and a telephoto lens, and have an excellent capacity. Also, it is small as using aspheric surface. In this paper, after we evaluate and analyze two-group zoom lens system and three-group zoom lens system for camera, we refer to it, and design three-group zoom lens system for camera. Therefore, when we design a zoom lens system for camera, we use a symmetrical system. As using an aspheric surface, we can try to a miniaturization and an efficient improvement. We use optical valuable measure methods, a ray intercept plot, MTF and Seidel coefficient. So, we can confirm to have a similar level to compare with reference model.

  • PDF

Path Planning and Control of an Articulated Robot for Polishing Large Aspherical Surface (대구경 비구면 연마를 위한 다관절 로봇의 경로 계획 및 제어)

  • Kim, Ji-Su;Lee, Won-Chang
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1387-1392
    • /
    • 2019
  • Aspherical mirrors have lighter weight and better performance than spherical mirrors, but it is difficult to process their shape and measure the processing precision. Especially, large aperture aspherical mirrors mounted on satellites need high processing precision and long processing time. The computerized numerically controlled machine of gantry type has been used in polishing process, but it has difficulties in processing the complex shapes due to the lack of degrees of freedom. In order to overcome this problem we developed a polishing system using an articulated industrial robot. The system consists of tool path generating program, real-time robot monitoring, and control program. We show the performance of the developed system through the computer simulation and actual robot operation.

The Evaluation on the frequency Characteristics of the Optical Glass Lens by Resonant Ultrasound Spectroscopy (RUS법에 의한 광학기기용 렌즈의 주파수 특성평가)

  • Yang, In-Young;Kim, Seung-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.127-132
    • /
    • 2005
  • The optical glass lens is required high dimensional precision such as the lack of defect. In this paper, we examined the detectable defect by using the resonant ultrasound spectroscopy(RUS). The RUS is the measurement system which is to excite the specimen and to inspect the differences of resonant frequency pattern between acceptable specimen and specimen which has some defects. In this paper, for nondestructive evaluation by using RUS, we measured the resonant frequency of each specimen which is spherical and aspherical glass lens. With the results, we knew the polishing processing degree of spherical glass lens by the measured resonant frequency and could evaluate the characteristic of aspherical glass lens about some flaws.

Aspheric Lens Measurements by Digital Holographic Microscopy and Liquid (액체와 Digital Holographic Microscopy을 이용한 비구면 렌즈 측정 연구)

  • Kim, Doocheol;Shin, Sanghoon;Yu, Younghun
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.318-323
    • /
    • 2013
  • Digital holographic microscopy allows optical path difference measurement. Optical path difference depends on both the refractive index and the morphology of the sample. When interference fringes are very closely spaced, the phase data contain high frequencies where $2{\pi}$ ambiguities cannot be resolved. The immersion testing method, which is a transmission test while the sample is immersed in liquid, is very effective in reducing high frequency fringes in transmission measurements so that large dynamic range testing is possible for a non-null configuration. We developed a digital holographic microscope using liquid that can measure the high numerical aperture aspheric morphology of a sample. This system provides highly precise three-dimensional information on the sample. By improving the experimental method, choosing liquids which have similar refractive index to the sample, we can measure more accurate three-dimensional information on the samples.

원추형상을 이용한 비구면 형상가공기술

  • 이상민;박철우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.246-246
    • /
    • 2004
  • 현재 비구면렌즈를 만들기 위해서는 다양한 방법이 있다. Glass종류의 가공시 초정밀 절삭가공기(DTM)에서 가공하거나 정밀 연삭기를 가지고 가공하게 된다. 이 과정에서 렌즈 표면에 공구 흔적이나 표면거칠기 개선을 위해 연마작업을 하게 되는데, 사용하는 장비가 폴리싱 머신이다. 축대칭인 폴리싱머신의 경우 X, Z, $\theta$로 동시 3축제어가 가능하다. 하지만 이 장비의 경우 연마에서 원하는 형상정밀도와 표면거칠기를 얻기 위해 각축들의 위치정밀도와 분해능이 높은 부품을 사용하여 기계자체가 고가라는 점이 단점으로 작용한다.(중략)

  • PDF

The optical analysis of the wide angle lens system to get a fixed focus (고정 초점 광각 렌즈계의 광학적 분석)

  • Ji, Taek Sang;Lim, Hyeon Seon;Kim, Bong Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.1
    • /
    • pp.63-67
    • /
    • 2002
  • In this paper we analyzed the optical property after we chose the lens system to cover a wide angular field which is designed to use a established designed meniscus negative outer element. The special quality of the system is to offer a wide angular field by getting only one outer negative element and to be a compacted optical system to utilize the good point of miniaturization and light-weighturization by using two aspheric surfaces. Also, we observed the aberration correction of a aspheric as we investigated two aspheric's forms to use for a aberration correction.

  • PDF

Surface-error Measurement for a Convex Aspheric Mirror Using a Double-stitching Method (이중 정합법을 이용한 볼록비구면 반사경의 형상 오차 측정)

  • Kim, Goeun;Lee, Yun-Woo;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.314-322
    • /
    • 2021
  • A reflecting telescope consists of a concave primary mirror and a convex secondary mirror. The primary mirror is easy to measure, because it converges the beam from an interferometer, while the secondary mirror diverges the beam and so is not easy to measure, even though it is smaller than the primary mirror. In addition, the Korsch-type telescope uses the central area of the secondary mirror, so that the entire area of the secondary mirror needs to be measured, which the classical Hindle test cannot do. In this paper, we propose a double-stitching method that combines two separate area measurements: the annular area, measured using the Hindle stitching method, and the central area, measured using a spherical wave from the interferometer. We test the surface error of a convex asphere that is 202 mm in diameter, with 499 mm for its radius of curvature and -4.613 for its conic constant. The surface error is calculated to be 19.5±1.3 nm rms, which is only 0.7 nm rms different from the commercial stitching interferometer, ASI. Also, the two results show a similar 45° astigmatism aberration. Therefore, our proposed method is found to be valuable for testing the whole area of a convex asphere.