DOI QR코드

DOI QR Code

Aspheric Lens Measurements by Digital Holographic Microscopy and Liquid

액체와 Digital Holographic Microscopy을 이용한 비구면 렌즈 측정 연구

  • Received : 2013.09.02
  • Accepted : 2013.10.28
  • Published : 2013.12.25

Abstract

Digital holographic microscopy allows optical path difference measurement. Optical path difference depends on both the refractive index and the morphology of the sample. When interference fringes are very closely spaced, the phase data contain high frequencies where $2{\pi}$ ambiguities cannot be resolved. The immersion testing method, which is a transmission test while the sample is immersed in liquid, is very effective in reducing high frequency fringes in transmission measurements so that large dynamic range testing is possible for a non-null configuration. We developed a digital holographic microscope using liquid that can measure the high numerical aperture aspheric morphology of a sample. This system provides highly precise three-dimensional information on the sample. By improving the experimental method, choosing liquids which have similar refractive index to the sample, we can measure more accurate three-dimensional information on the samples.

디지털 홀로그래피 현미경은 기준광과 시료의 굴절률과 두께에 의한 광경로 차이를 간섭 방법을 이용하여 측정하여 3차원 형상을 측정하는 방법이다. 그리고 광 경로차는 시료의 두께와 시료와 시료 주변의 굴절률 차이에 의존한다. 시료 형상 기울기가 매우 큰 경우에는 광 경로차가 커져 일반적인 간섭 방법으로는 측정이 어렵다. 이런 경우 시료를 액체에 담그어 측정하면 광 경로차가 매우 작아져서 일반적인 간섭 방법을 이용하여 측정할 수 있다. 본 연구에서는 디지털 홀로그램 현미경과 액체를 이용하여 기울기가 큰 비구면 렌즈의 형상을 측정하는 연구를 하였다. 시료의 굴절률과 비슷한 액체를 선택함으로서 비구면 렌즈의 정밀한 3차원 측정이 가능하였다.

Keywords

References

  1. D. Malacara, Optical Shop Testing (Wiley & Sons, Inc., USA, 2007).
  2. G. R. Brady, M. Sicairos, and J. R. Fienup, "Optical wavefront measurement using phase retrieval with transverse translation diversity." Opt. Express 624, 103801-103809 (2009).
  3. G. R. Brady and J. R. Fienup, "Range of phase retrieval in optical metrology," in Frontiers in Optics 2005/Laser Science XXI (Optical Society of America, Washington DC, 2005), paper FTuS3.
  4. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967). https://doi.org/10.1063/1.1755043
  5. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, "Reconstruction of hologram with a computer," Sov. Phys. Tech. 17, 434-444 (1972).
  6. H. Cho, D. Kim, Y. Yu, W. Jung, and S. Shin, "3-dimensional measurement using digital holographic microscope and phase unwrapping," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 17, 329-334 (2006). https://doi.org/10.3807/KJOP.2006.17.4.329
  7. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999). https://doi.org/10.1364/AO.38.006994
  8. U. Schnars, "Direct phase determination in hologram interferometry with use of digitally recorded holograms," J. Opt. Soc. Am. A11, 2011-2015 (1994).
  9. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (John Wiley & Sons., Inc. USA, 1999).
  10. H. Cho, D. Kim, W. Jung, S, Shin, and Y. Yu, "Dual-wavelength digital holography microscope for BGA measurement using partial coherence source," J. Opt. Soc. Korea 15, 352-356 (2011). https://doi.org/10.3807/JOSK.2011.15.4.352
  11. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-3094 (2005). https://doi.org/10.1364/OL.30.002092

Cited by

  1. Study of an Aspherical Lens Design Method for Removing the Spherical Aberration of a Human Eye vol.26, pp.6, 2015, https://doi.org/10.3807/KJOP.2015.26.6.299