• Title/Summary/Keyword: 비가연성

Search Result 69, Processing Time 0.024 seconds

플라즈마 토치를 이용한 비가연성 모의 방사물 용융실험

  • 조천형;문영표;송명재
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.403-408
    • /
    • 1998
  • 비가연성 방사성 폐기물로 발생되는 물질은 큰크리트, 유리, 석고, 철재류, 토사류 및 원자력발전소 계통에서 발생하는 필터류 등이며, 이들 폐기물 중 금속류를 제외한 물질들의 성분은 SiO$_2$가 60%이상, CaO 3~12%, $Al_2$O$_3$ 10% 미만으로 일반 유리의 성분과 유사하다. 따라서 이들 비가연성 방사성 폐기물을 최적의 흔합비로 용융하였을 경우 안정한 유리질의 고화체를 생성시킬 수 있다. 본 연구에서는 시료별로 조성이 다른 비가연성 모의 폐기물을 플라즈마 토치(60kW)와 용융로 등이 장착된, 시스템에서의 용융 실험을 통해 약 20%정도의 부피 감용효과가 있음을 밝혀냈고, 생성된 웅융 고화체에 대한 침출실험을 통하여 EPA의 규제치를 안정적으로 만족하는 건전성을 확인하였다.

  • PDF

Experiment on the Vitrification of Nonflammable Wastes Using AP-200L Plasma Torch (AP-200L 토치를 이용한 비가연성 방사성폐기물 고온용융처리)

  • 최종락;유병수;김천우;박종길;하종현
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.48-53
    • /
    • 2003
  • The high temperature melting test for nonflammable wastes using a plasma torch was conducted. The AP-200L hollow cathode type plasma torch was installed at the pilot plasma melting furnace in NETEC. The surrogates were prepared to simulate concrete, soil and their mixture with steel. The experimental conditions such as feeding rate, the distance between melts surface and torch nozzle, torch rotation speed, gas flow rate and pressure in the furnace were decided. Basic parameters such as temperatures of cooling waters, off-gas and torch power were measured. The vitrified samples were analyzed by SEM/EDS.

  • PDF

Shielding Analysis for Industrial Package: Focusing on Dry Active Waste (IP형 운반용기 차폐해석-잡고체폐기물을 중심으로)

  • Lee Kang-Wook;Cho Chun-Hyung;Jang Hyun-Kie;Choi Byung-Il;Lee Heung-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.523-530
    • /
    • 2005
  • In this study, maximum exposure rate at DAW(Dry Active Waste) drum surface which is satisfying regulation limit was calculated for conceptual design of IP(Industrial Package). DAW can be classified as combustible and non-combustible waste and the calculation was conducted for single and mixed radionuclide for each type of waste. In case of combustible waste that mixed radionuclide is uniformly distributed, the maximum exposure rates at drum surface were 3.60E-01, 8.85E-01 and 1.27E+01 mSv/hr for IP Type 1, 2-a and 2-b, respectively. and 3.60E-01, 8.85E-01, 1.27E+01 mSv/hr for single radionuclide(Co-60). In case of non-combustible waste that mixed radionuclide is uniformly distributed, the maximum exposure rates at drum surface were 7.14E-01, 1.83E+00, 2.69E+01 mSv/hr for IP Type 1, 2-a and 2-b, respectively. and 7.13E-01, 1.81E-01, 2.62E+01 mSv/hr for single radionuclide(Co-60). Through this study, the maximum amount of DAW can be transported by IP was suggested as maximum exposure rate at drum surface and the calculation for the other types of waste will be conducted.

  • PDF

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.

A Study on Connection Ductility of Steel Structures Subjected to Monotonic Loading (단조하중을 받는 철골구조물의 접합부 연성도에 관한 연구)

  • Kang, Suk-Bong;Kim, Jin-Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.375-385
    • /
    • 2000
  • The required connection ductility has been evaluated, considering geometric, material and connection nonlinearity, for 6-story unbraced and 20-story braced steel structures subjected to ultimate lateral load. For material nonlinearity, section moment-curvature relationship and member stiffness matrix have been derived utilizing fiber model and linear flexibility distribution model. In 6-story structure with semi-rigid connections for rigid connection, the required connection ductility is less than that for rigid connection. In 20-story structure, the required connection ductility for semi-rigid connection is almost the same as that for shear connection and the required ductility for rigid connection is larger than that for semi-rigid or shear connection.

  • PDF

Constitutive Model for Plastic Damage of Ductile Materials (연성재료의 소성손상 구성방정식에 관한 연구)

  • I.S. Nho;S.J. Yim;J.G. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.179-192
    • /
    • 1992
  • An elasto-plastic-damage constitutive model for ductile materials was derived under the framework of thermodynamic approach of contimuum damage mechanics(CDM) in which internal irreversible thermodynamic change of micro-structure of materials such as plastic deformation and damage evolution were considered as thermodynamic state variables. New constitutive model can predict not only the elasto-plastic behaviors but also the sequential degradation process of ductile materials more rationally.

  • PDF

Pushover Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.325-334
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. A pushover analysis of the structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of the semi-rigid connection were adopted for the models. A fiber model was utilized for the moment-curvature relationship of the steel beam and the column, and a three-parameter power model was adopted for the moment-rotation angle of the semi-rigid connection. The top displacement, base-shear force, required ductility for the connection, sequence of the plastic hinge, and design factors such as the overstrength factor, ductility factor, and response modification coefficient were investigated using the pushover analysis of a 2D structure subjected to the equivalent static lateral force of KBC2005. The partial arrangement of the semi-rigid connection was found to have secured higher strength and lateral stiffness than that of the A-Semi frame, and greater ductility than the A-Rigid frame. The TSD connection was found suitable for use for economy and safety in the sample structure.

Behavior of Buried Pipe under Embankment (성토하에 매설된 관의 거동)

  • 강병희;윤유원
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.49-58
    • /
    • 1988
  • The stresses on the buried steel pipe under embankment are analysed by the elasto-plastic theory using FEM to study the influences of the geometry of soil-conduit pipe system and the elastic modulus of the fill on the pipe responses . The geometry of the system considered in this study includes the height of embankment, the thickness of the pipe, and the width and the depth of the trench . By comparing the stresses computed by Marston-Spangler's pipe theory with those obtained from the elasto-plastic theory, Marston-Spangler's theory was discussed and analysed . It is found that the stress distribution around the pipe by elasto- plastic analysis is similar to that by Spangler's flexible pipe theory when the geometrical ratio (diameter/thickness) of the steel pipe is 400. And Spangler's flexible pipe theory does not seem to be suitable to analyse the buried steel pipe of which the geometrical ratio is lower than 200. The vertical loads by the rigid pipe theory are always larger than those by the flexible pipe theory regardness of the variations in the geometry of soil-conduit pipe system considered above and the elastic modulus of the fill.

  • PDF