• Title/Summary/Keyword: 블리딩

Search Result 92, Processing Time 0.031 seconds

Development and Analysing the Practical Use of Bleeding Reduction Agent for Concrete (콘크리트용 블리딩저감제의 개발 및 실용성 검토)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Shin, Dong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.217-224
    • /
    • 2003
  • It is necessary to reduce bleeding, which is a kind of segregation of fresh concrete, for improvement of quality of concrete structure. But, besides using high qualify material and adjusting mixture ratio, there is no easy solution to reduce bleeding by now. For that reason, this study is intended to develop bleeding reduction agent and to investigate its application. The test results are following. At first, recommended mixture ratio of bleeding reduction agent is proven to be MC viscosity agent : defoaming agent : superplasticyzer of 1 : 0.004 : 0.2. It goes to prove that bleeding reduction agent does not have bad effect on the quality of concrete such as fluidity, air content and the strength of hardened concrete etc, and can reduce bleeding effectively. Therefore it is thought that bleeding reduction agent can be applied to construction field effectively.

Bleed Test for Mortar using Pressure Filter (가압 거름방법에 의한 모르타르의 블리딩 측정 방법)

  • Shin, Kyung-Joon;Choi, Seul-Woo;Choi, Sung;Lee, Kwang-Myong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.809-812
    • /
    • 2008
  • Bleed test methods currently being specified in KS, ASTM and BS are the methods to read the height of bleed water and volume changes of mortar poured into transparent cylinder. Time for measuring of bleed are specified as 3, 20 hours in KS specification, while bleed is measured at 3 hour and change of volume is measured at 24 hour in ASTM and BS specification. Like these, bleed test takes a lot of time to conduct. Another method to measure the bleed is the pressure filter test. This method predict the bleed by measuring the passed water through the fiber glass filter under pressure. This pressure filter test developed by Schupack in 1971 has an advantage in predicting the bleed in shorter time. However, data correlating the pressure filter test results with amount of bleed are limited. Therefore, this study aims at verifying the availability of pressure filter test as a method to predict the bleed and deriving the relation between this test results and bleed.

  • PDF

트럭 ㆍ버스용 타이어의 블리딩 C.B.U.

  • Lee, Gwang-Jae
    • The tire
    • /
    • s.132
    • /
    • pp.23-39
    • /
    • 1987
  • 타이어는 여러가자의 중요한 기능을 갖추고 있으나 공기압이 부족하거나 또는 공기가 누출된 상태에서 사용하여 타이어가 손상된 경우에는 자동차의 조종성, 안정성에 중대한 영향이 미친다는 것은 명백한 사실이다. 이러한 타이어 손상의 일례로서 트럭ㆍ버스용 타이어의 블리딩(bleeding) C.B.U.가 있다. 본고는 이와같은 손상에 대하여 실제 사용조건에서 재현 테스트를 실시하여 그 발생요인을 해석한 일본 자동차 타이어 협회의 자료에서 발췌한 것이다.

  • PDF

Effects of Diameter of Cylinder and the Number of Strand on the Bleeding of Cement Paste (실린더 직경과 강연선 개수가 시멘트 페이스트의 블리딩에 미치는 영향)

  • Lee, Jung-Soo;Koh, Kyung-Teak;Ahn, Gi-Hong;Kang, Su-Tae;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.38-46
    • /
    • 2016
  • In this study, the bleeding tests were performed to investigate the effects of cement paste(w/c=0.42) on bleeding through varying the number of strand and the diameter of cylinder. The test variables were specified by differing the diameter of cylinder and the number of strand. The bleeding test was performed with respect to all diameter parameters by with or without strand. In addition, the number of strands were specified at four levels, 0, 1, 2, and 3 EA in case of 50 mm cylinder. In case of without strand, the bleeding rate was determined at low level under 2%. Moreover, all of the specimens had similar value in the measurement error. In case of with strand, maximum bleeding rate was 10%. As the diameter of cylinder decreased, the bleeding rate was decreased. The bleeding rate was altered rapidly in between 50 to 100mm of diameter. Even though bleeding rate was increased according to the increase in the number of strand, these tendency for bleeding rate was negligible with the measurement error.

Bleeding characteristics of coupling materials for installation of acoustic emission (AE) sensor (AE 센서 설치를 위한 커플링 재료의 블리딩 특성)

  • Lee, Jong-Won;Kim, Hyunwoo;Kim, Min-Koan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.635-650
    • /
    • 2017
  • Acoustic emission (AE) sensors have broadly used to monitor the damage of underground structures and tunnels. The reliability of measured signal is determined by the coupling condition of the AE sensors which are embedded in the target underground structure. To secure the reliability of health monitoring results, it is important to understand the characteristics of the coupling materials. In this study, laboratory tests were performed using portland cement, micro cement, and gypsum as coupling materials in order to verify the bleeding characteristics. The effective parameters for bleeding were determined to be water-cement ratio, material type, curing time, and injected volume of coupling materials. As a results of the experimental study, the bleeding rate increases with an increase in a water-cement ratio and an injected volume; for portland cement, water-cement ratio and injected volume effects are larger than the micro cement. However, curing time is not much effective for occurrence of the bleeding phenomenon. It is anticipated that this study may be useful for the selection of suitable coupling materials for installation of acoustic emission sensors.

Effects of Mineral Admixture on the Characteristics of Grout for PSC Bridge (광물질 혼화재가 PSC 교량용 그라우트의 특성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Ahn, Ki-Hong;Kang, Su-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • The study investigates the effects of the type, replacement ratio and method of use of mineral admixtures on the fluidity, bleeding ratio, volumetric change and compressive strength of the grout in order to provide basic data for the development of high-quality grout for PSC bridges. In view of the results relative to the type and replacement ratio of the mineral admixtures, it appears that fly ash has practically no effect on the improvement of the fluidity nor on the reduction of bleeding and shrinkage of the grout. On the contrary, blast furnace slag and silica fume appear to have significant effect on the improvement of the fluidity or on the reduction of bleeding and shrinkage of the grout. With regard to the combined use of mineral admixtures, the combination of fly ash and blast furnace slag provides satisfactory fluidity but with significant increase of bleeding and shrinkage, whereas the combination of blast furnace slag and silica fume reduces bleeding and shrinkage but with large loss of the fluidity. On the other hand, the combination of fly ash and silica fume results in satisfactory fluidity accompanied with fair reduction of bleeding and shrinkage of the grout. In view of these results, the type, replacement ratio and method of use of the mineral admixtures are seen to influence the fluidity, bleeding and volumetric change of the grout. Accordingly, it is necessary to select the mineral admixtures considering these effects for their exploitation in the grout of PSC bridges.

Properties of Bleeding Reduction of Concrete Using AE Water Reducing Agent for Reduction of Bleeding (블리딩저감용 AE감수제를 사용한 콘크리트의 블리딩 저감 특성)

  • Kim, Ki-Hoon;Hwang, Yin-Seong;La, Woon;Im, Ju Hyeuk;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.69-72
    • /
    • 2003
  • This study is intended to investigate the fundamental properties of concrete which AE water reducing agent for reduction of bleeding is used, and the properties of bleeding reduction. According to the results, when the adding ratio of AE water reducing agent for reduction of bleeding increases, a range of normal fluidity and aimed air content arc satisfied, setting time is faster than that of normal AE water reducing agent. And bleeding amount decreases, bleeding speed is highest between 60 and 90 min, and sinking depth increases drastically in 60 min. When, AE water reducing agent for reduction of bleeding is added, compressive strength shows a slight variation by air content, but there is not a large influence by addition of AE water reducing agent for reduction of bleeding. Synthetically, it proves that AE water reducing agent for reduction of bleeding satisfies aimed air content in the range of normal slump and can reduce only bleeding without quality variation of compressive strength.

  • PDF

Properties of Bleeding Reduction of Concrete Using AE Water Reducing Agent for Reduction of Bleeding (블리딩저감용 AE감수제를 사용한 콘크리트의 블리딩 저감 특성)

  • Kim, Ki-Hoon;Hwang, Yin-Seong;La, Woon;Im, Ju-Hyeuk;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.69-72
    • /
    • 2003
  • This study is intended to investigate the fundamental properties of concrete which AE water reducing agent for reduction of bleeding is used, and the properties of bleeding reduction. According to the results, when the adding ratio of AE water reducing agent for reduction of bleeding increases, a range of normal fluidity and aimed air content are satisfied, setting time is faster than that of normal AE water reducing agent. And bleeding amount decreases, bleeding speed is highest between 60 and 90 min, and sinking depth increases drastically in 60 min. When. AE water reducing agent for reduction of bleeding is added, compressive strength shows a slight variation by air content, but there is not a large influence by addition of AE water reducing agent for reduction of bleeding. Synthetically, it proves that AE water reducing agent for reduction of bleeding satisfies aimed air content in the range of normal slump and can reduce only bleeding without quality variation of compressive strength.

  • PDF

Influence of Cement and Mixing time Factor on the Bleeding of Concrete (콘크리트의 블리딩에 미치는 시멘트 및 믹싱시간의 영향)

  • Lee, Won-Am;Um, Tai-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.593-596
    • /
    • 2008
  • The bleeding of concrete is defined as a kind of separation of materials. The durability of concrete, as well as the quality caused by the bleeding. Therefore, This study is intended to find influence of cement and mixing time factor on the bleeding of concrete. We want to know two factors that determine the change, to provide it to our customers. According to the results, The bleeding ratio increase by the increase of mixing time factor. At the 90 second of mixing time, the amount of bleeding differ greatly from cement properties. This paper presents an experimental study on bleeding ratio, slump and compressive strength properties with three days. In addition, the mixing time is inversely related slump loss ratio, the initial value of the compressive strength is only affected by the mixing time. As a result, the bleeding of concrete was obtained that their characteristics depends on the cement and mixing time factor, also in the future, to derive optimum mixing time for a variety of review is necessary.

  • PDF

Study on Concept Design of Supersonic Inlet and Flow Control of Bleeding under Operating Condition (초음속 흡입구 개념 설계와 운영조건 내의 블리딩(bleeding) 유동제어 연구)

  • Choi, Jaehwan;Cheon, Somin;Choe, Yohan;Hong, Wooram;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1025-1031
    • /
    • 2012
  • The present paper deals with concept design of supersonic inlet based on compressible flow theory and flow control of bleeding in order to guarantee stability of supersonic inlet of ramjet engine in broad range of operating conditions. Shock instability, shock wave-boundary layer interaction and flow separation should be properly controlled to improve performance of the supersonic inlet. Considering shock strength, boundary layer and flow separation, the supersonic inlet is modified from the basic model which is designed under inviscid theory. Consequently, shock is stabilized, and required mass flow rate is obtained. Furthermore, bleeding is applied to the supersonic inlet to maintain performance in off-design conditions. Mass flow condition is adopted for modeling of bleeding effect, and performance of the supersonic inlet is evaluated by changing bleeding locations and numbers.