Kim, Donghyun;Yang, Shuo;Arimbuyutan, Reya;Lim, Jae-hyun;Kim, Seoksoo
Proceedings of the Korea Contents Association Conference
/
2015.05a
/
pp.427-428
/
2015
정보통신 기술의 발전으로 교육 패러다임이 스마트 디바이스를 이용하는 스마트 러닝으로 변화하고 있다. 특히 에듀테인먼트 시스템들은 암묵적 지식습득률 향상을 위하여 증강현실 기술을 도입한 다양한 시스템들이 도입되고 있다. 그러나 이와 같이 증강현실을 이용한 시스템들은 실환경의 조명과 가상환경의 조명환경의 부조화로 인하여 영상 합성시 실감성이 낮은 문제점을 가지고 있다. 따라서 본 논문에서는 증강 객체, 웹캠을 통해 입력된 영상, 가상의 배경 영역으로 구성된 단일 레이어를 3차원 조명환경 정보를 포함한 블록 레이어로 변환하고 변환된 블록 레이어를 합성하는 에듀테인먼트를 위한 증강현실 시스템을 설계한다.
KIPS Transactions on Computer and Communication Systems
/
v.6
no.10
/
pp.415-420
/
2017
Virtualization technique of OS-level is a new paradigm for deploying applications, and is attracting attention as a technology to replace traditional virtualization technique, VM (Virtual Machine). Especially, docker containers are capable of distributing application images faster and more efficient than before by applying layered image structures and union mount point to existing linux container. These characteristics of containers can only be used in layered file systems that support snapshot functionality, so it is required to select appropriate layered file systems according to the characteristics of the containerized application. We examine the characteristics of representative layered file systems and conduct write performance evaluations of each layered file systems according to the operating principles of the layered file system, Allocate-on-Demand and Copy-up. We also suggest the method of determining a appropriate layered file system principle for unknown containerized application by learning block I/O usage history of each layered file system principles in artificial neural network. Finally we validate effectiveness of artificial neural network created from block I/O history of each layered file system principles.
터치스크린을 통한 유저의 입력은 미디신호로 변환되며 생성된 블록은 하나의 음표 또는 다수의 음표로 남게 되며 유저가 설정한 타임라인의 빠르기에 따라 입력된 블록 위치의 음계 값을 토대로 소프트웨어 신디사이저의 오실 레이터에서 생성된 소리를 스피커로 출력해 낸다. 블록은 서로 다른 색깔의 8개의 미디채널로 존재하여 각 채널을 레이어 시켜 다른 블록을 생성하여 사인파, 톱니파, 삼각파, 사각파등을 엔벨로프 변형을 통해 만든 10가지 다른 소리로 지정하여 넣을 수 있다. 미디의 멀티채널방식을 이용해 다중 레이어의 입력방식을 취했으며, 관객은 작곡 모드에서는 일정한 패턴을 가진 단음이나 화성을, 게임모드에서는 생성된 공이 블록을 부딪치며 예측하기 어렵게 생성된 단음이나 화성음을 만들 수 있다. 생성한 음이 재생될 때에는 생성된 음정의 주파수 값과 음량에 따라서 RGB LED 조명이 반응을 하며 유저가 생성시킨 독특한 음악 진행에 따라 조명의 밝기와 색깔이 바뀌게 된다.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.14
no.5
/
pp.430-437
/
2021
In this paper, we propose a robust face recognition method against soft errors with a deep convolutional generative adversarial network(DCGAN) based compensation method by a cross-layer approach. When soft-errors occur in block data of JPEG files, these blocks can be decoded inappropriately. In previous results, these blocks have been replaced using a mean face, thereby improving recognition ratio to a certain degree. This paper uses a DCGAN-based compensation approach to extend the previous results. When soft errors are detected in an embedded system layer using parity bit checkers, they are compensated in the application layer using compensated block data by a DCGAN-based compensation method. Regarding soft errors and block data loss in facial images, a DCGAN architecture is redesigned to compensate for the block data loss. Simulation results show that the proposed method effectively compensates for performance degradation due to soft errors.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.589-591
/
2000
비디오 데이터가 포함하고 있는 카메라와 이동물체의 동작정보를 추출하기 위한 대표적인 방법으로 동작벡터 추출알고리즘이 있다. 본 논문에서는 영상 내에 밝기 값 분포가 균일한 영역이 존재할 때 부정확한 정합 결과를 보이는 것은 기존 알고리즘의 문제점과 이를 개선할 수 있는 계층적 블록정합 알고리즘의 정합오류 전파가능성, 높은 시간복잡도 문제를 동시에 해결할 수 있는 블록정합 알고리즘을 제안한다. 제안하는 알고리즘은 Coarse-to-Fine 방식의 탐색방법과 Dynamic Control Strategy를 결합한 것으로서 정합한 블록의 상황에 따라 탐색 레이어를 동적으로 변경시키는 방법을 사용한다. 본 알고리즘은 크게 두단계로 나뉘어 지는데 탐색 레이어를 결정하는 Control 변경 결정 단계와 정합도 측정함수를 통해 블록에 대한 정합 정확도를 측정하는 단계로 구성이 된다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.540-543
/
2020
기존의 초해상도 딥러닝 기법은 모델의 깊이가 깊어지면서, 좋은 성능을 내지만 점점 더 복잡해지고 있고, 실제로 사용하는데 있어 많은 시간을 요구한다. 이를 해결하기 위해, 우리는 딥러닝 모델의 가중치를 양자화 하여 추론시간을 줄이고자 한다. 초해상도 모델은 feature extraction, non-linear mapping, reconstruction 세 부분으로 나누어져 있으며, 레이어 사이에 많은 skip-connection 이 존재하는 특징이 있다. 따라서 양자화 시 최종 성능 하락에 미치는 영향력이 레이어 별로 다르며, 이를 감안하여 강화학습으로 레이어 별 최적 bit 를 찾아 성능 하락을 최소화한다. 본 논문에서는 Skip-connection 이 많이 존재하는 MSRN 을 사용하였으며, 결과에서 feature extraction, reconstruction 부분과 블록 내 특정 위치의 레이어가 항상 높은 bit 를 가짐을 알 수 있다. 기존에 영상 분류에 한정되어 사용되었던 혼합 bit 양자화를 사용하여 초해상도 딥러닝 기법의 모델 사이즈를 줄인 최초의 논문이며, 제안 방법은 모바일 등 제한된 환경에 적용 가능할 것으로 생각된다.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.590-591
/
2024
최근에 개인 데이터의 프라이버시가 중요해 지면서, 딥러닝 분야에서 개인 데이터 프라이버시 보호할 수 있는 연합학습 기술이 주목받고 있다. 특히 5G MEC나 블록체인 환경과 같이 통신 부하 및 지연 시간이 중요한 영역에서 연합학습 모델의 전송 비용 감소에 관한 연구가 활발히 진행 중이다. 본 논문에서는 연합학습 과정에서 효율적인 모델 전송을 위해 레이어 단위로 모델을 전송하는 기법을 제안한다. 실험 결과를 통해, 레이어 단위로 전송함으로써, 전송 데이터는 66% 줄어들 수 있지만, 정확도 변화는 1% 이내임을 확인하였다.
For low contrast images, a histogram equalization is possible to easily identify information when the intensity is concentrated in an image. Over contrast enhancement is the problem of generating an unnatural image cognitively because the focus of existing techniques was the contrast enhancement. In order to solve this problem, CLAHE method solves unnatural problems by limiting contrast using a maximum threshold. However, this method has an extra problem that concealed detail information in an image. This paper proposes a detail-map based on the multiple layers block overlapped histogram equalization in order to avoid loss of detail information. Loss of detail information has been made to minimize as combining images with limited contrast enhancement using a detail-map in each layers.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.5
/
pp.1193-1200
/
2010
This paper presents a new adaptive macroblock quantization algorithm which generates the output bits corresponding to the target bit budget. The H.264 standard uses various coding modes and optimization methods to improve the compression performance, which makes it difficult to control the amount of the generated traffic accurately. In the proposed scheme, linear regression analysis is used to analyze the relationship between the bit rate of each macroblock and the quantization parameter and to predict the MAD values. Using the predicted values, the quantization parameter of each macroblock is determined by the Lagrange multiplier method and then modified according to the difference between the bit budget and the generated bits. It is shown by experimental results that the new algorithm can generate output bits accurately corresponding to the target bit rates.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.279-282
/
2012
로컬 히스토그램 평활화(LHE)는 영상에서 로컬 정보를 강조하기 위한 효율적인 알고리즘 중 하나이다. 그러나 이 알고리즘은 스펙클 노이즈를 증폭시키는 단점을 가진다. 따라서, 기존의 로컬 히스토그램 평활화 기법을 확장한 다중 레이어 블록 오버랩 히스토그램 평활화 기법을 이용하여 기존 로컬 히스토그램 평활화 기법들의 문제점을 해결하고자 하였다. 이 방법은 3단계-컨트라스트 향상 단계, 노이즈 제거 단계, 통합 단계로 이루어진다. 제안된 방법에서는 기존 방법의 컨트라스트 향상 단계에서 일반적인 로컬 히스토그램 평활화 방법이 아닌 컨트라스트를 제한하는 적응적인 히스토그램 평활화 기법을 적용하고, 노이즈 제거 단계에서 새로운 바이레터럴 필터를 적용하였다. 즉, 기존 방법의 문제점들을 해결하도록 알고리즘을 변형하여 기존 알고리즘의 성능을 개선하였다. 실험 결과는 제안된 방법이 기존의 방법 및 잘 알려진 로컬 히스토그램 평활화 기법들과 비교하여 좋은 성능을 내는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.