• Title/Summary/Keyword: 블록전단강도

Search Result 64, Processing Time 0.024 seconds

Response Analysis of Frame Structures with the Consideration of Tunnel Construction (프레임구조물의 터널시공에 따른 거동분석)

  • Son, Moorak;Park, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.121-127
    • /
    • 2012
  • This paper investigates the response of frame structures with the consideration of tunnel construction (ground loss) conditions. The response of four-story open frame structure and block-infilled frame structures, which are subjected to tunnelling-induced ground movements, has been investigated in different construction (ground loss) conditions using numerical analysis. The open frame structure has been modelled as an elastic structure, while the block-infilled frame structure has been modelled to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of the two different frame structures has been investigated in terms of construction (ground loss) conditions considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in the structures, has been provided in terms of construction (ground loss) conditions using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby frame structures due to tunnelling-induced ground movements.

Response Analysis of Nearby Structures to Excavation-Induced Advancing Ground Movements (지반굴착 유발 진행성 지반변위에 의한 인접구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.153-162
    • /
    • 2009
  • This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions of different soil and structural characteristics. The response of four and two-story block structures, which are subjected to excavation-induced advancing ground movements, are investigated in different soil conditions using numerical analysis. The structures for numerical analysis are modelled to have cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four and two-story block structures are investigated with advancing ground movement phases and compared with the response of structures which are subjected to excavation-induced total ground movement. The response of structures is compared among others in terms of the magnitude and shape of deformations and cracks in structures for different structure and ground conditions. The results of the comparison provide a background for better understandings for controlling and minimizing building damage on nearby structures due to excavation-induced ground movements.

Strength Properties of GFRP Reinforced Glulam Beams Bonded with Polyvinyl Acetate-Based Emulsion Adhesive (초산비닐수지계 접착제를 사용한 유리섬유강화플라스틱 복합집성재의 강도 성능 평가)

  • Park, Jun-Chul;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.19-25
    • /
    • 2008
  • This study was carried out to investigate the bending strength properties of the unreinforced glulam beams and the GFRP laminated glulam beams according to the volume ratio of GFRP. The 7-layer glulam beams ($10cm(b){\times}14cm(h){\times}180cm(l)$) were manufactured, using Larch (Larix kaempferi Carr.) laminae ($2cm(h){\times}10cm(b){\times}360cm(l)$), which were dried to the moisture content of 8% and specific gravity of 0.54. GPRP of 0.1 and 0.3 cm was reinforced between the outmost layer of bottom and next layer. When the glulam beams were reinforced with GFRP at the volume ratio of 0.7% and 2.1%, respectively, the bending strength was increased by 12% and 28%, respectively, in the reinforced beams than in control glulam beams. Also, the GFRP reinforced layer of the glulam beams with GFRP laminations blocked the progression of rupture, and the unbroken part held about 90% of the bending strength. In the results of glue joints test, the block shear strength is higher than $7.1N/mm^2$, the standard of KS F3021, and in the result of delamination, the adhesive strength is good as the water soaking and boiling delamination was less than 5%.

Recycling of Waste XLPE Using a Modular Intermeshing Co-Rotating Twin Screw Extruder (모듈라 치합형 동방향회전 이축 스크류식 압출기를 이용한 폐 XLPE의 재활용)

  • Bang, Dae-Suk;Oh, Soo-Seok;Lee, Jong-Keun
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.131-141
    • /
    • 2004
  • The recycling of waste XLPE(crosslinked polyethylene), which is a major source of scraps from high voltage power transmission cables, has been discussed. The waste XLPE scraps were ground into fine powder with various sizes from less than $100{\mu}m$ up to about $1000{\mu}m$ using two types of tailor-made pulverizers. The compounds were prepared in a modular intermeshing co-rotating twin screw extruder at various conditions such as different compositions, types and powder sizes of waste XLPE, screw configurations and various polymer matrices (LDPE, HDPE, PP, PS). The mechanical and rheological properties and the fracture surface or the compounds were investigated. It was found that an improved impact strength was obtained from the compound with white XLPE powder pulverized from the scraps without outer/inner semi-conductive layers. Generally, the impact strength increases with the content of XLPE but decreases with the size of XLPE. Especially for LDPE, the extrusion was possible up to 80 wt% loading of XLPE. Also, the impact strength increases with the number of kneading disc blocks in the given screw configurations. The melt viscosity of the compounds increases with increasing XLPE loading. However, the higher shear thinning behavior of the compounds at common shear rates implies proper processibility of the compounds. In addition, the impact strength for other polymer matrices used increases with XLPE and it is noticeable that the impact strength of PS/XLPE (80/20 wt%) compound was improved twice that of pure PS.

A Study on the Vibration Reduction Effect of a Soil Grouting (지반내 그라우팅공법에 의한 지반진동감소 연구)

  • Huh, Young;Cho, Jun-Sang;Koo, Yong-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.104-110
    • /
    • 1995
  • 지반과 구조물의 동적 상호작용은 건설분야에서의 중요한 현상으로, 특히 지반을 통해 인근구조물로 전달되는 진동은 구조물 자체의 구조적인 문제 뿐 아니라 그 속에 거주하는 사람이나 설비에 대한 안전성 또는 사용성에 나쁜 영향을 야기할 수 있다. 본 논문에서는 이러한 진동을 저감시키기 위해, 지반내에 정상적인 진동전파를 방해하는 구조물을 시공하여 진동 저감효과를 만들어 내는 방법을 연구하였다. 이러한 연구의 발상은 다음과 같다. 충진지반에서의 지반진동의 진폭을 해석하면서 진동의 크기가 기저암의 위치에 따라 큰 영향을 받는 것을 알았고 이로부터 지반내에 인위적인 층을 만들수 있다면 지반진동의 크기를 변화시킬 수 있지 않을까라는 생각에서 본 연구를 시작하였다. 또한 지반 내에서의 정상적인 진동의 전파를 방해하기 위한 차진 구조물을 만드는 방법은 연약지반의 강도중대 또는 차수의 목적으로 주로 사용하고 있는 그라우팅공법의 사용이 가능할 것이므로, 기존의 그라우팅현장에서 만들어진 지반의 물성치들을 사용하여 경계요소법에 의한 수치해석적 방법을 택하였다. 본 연구에서는 그라우팅공법의 시공성에 관한 것은 포함되지 않는다. 본 논문에서는 지반의 구조를 경사구조와 수평지반구조라는 두가지 특징적인 경우에 대해 검토하였다. 이중 경사진 기저암층을 가진 지반의 경우에는 기저암에서 진동의 비대칭적인 반사에 의해 수평기저암에서와는 달리 기저암의 한쪽에서 다른쪽에 비해 큰 진동이 발생한다. 그라우팅층의 효과를 검토하기 위한 연구의 순서는 일정주파수의 조화진동에 대해 먼저 여러 가지 크기의 그라우팅층과 함께 블록으로 볼 수 있는 크기의 그라우팅층에 대해 진동저감효과를 해석하였고, 이를 통해 보강층의 소요크기 및 최적위치를 구하였다. 사용된 물성치는 실제 지하철 건설현장에서 나타난 지반물성치 및 그라우팅후의 지반강도 및 전단파전파속도를 이용하였다. 또한 마지막에서 검토된 기차하중에 대한 효과를 알아보기 위해 사용된 기차운행에 의한 지반가속도도 역시 측정된 값을 사용하였다. 그러나 당시의 기차운행속도가 낮아 정상적인 운행에서는 더 큰 값이 나올 것으로 판단되었으나 측정된 값을 그대로 사용하였다.

  • PDF

Seismic Performance of the Anchor System of Bearing-protection Devices Preventing the Unseating Failure of Bridges (낙교 방지를 위한 받침보호장치의 앵커부 내진성능)

  • Jeong, Hyeok-Chang;Kim, Min-Su;Park, Kwang-Soon;Ju, Hyeong-Seok;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.45-53
    • /
    • 2010
  • The unseating failure of bridges, which is one of the most severe types of damage leading to the loss of transportation function, should be avoided in earthquakes. As a measure of prevention of unseating failure resulting from the failure of bearings, bearing-protection devices are frequently used. They are installed beside the bearings and protect the bearings by resisting a seismic load transmitted from the superstructure. In order to show appropriate seismic performance, the strength of anchors as well as of device bodies should be confirmed. In Korea, they have been installed only according to the design provided by device agents, because a proper design method for the anchors has not been established. In this study the performance of bearing-protection devices with various heights of concrete bed blocks has been investigated experimentally, and a proper design method has been proposed to secure seismic performance.

Research Trends in Hybrid Cross-Laminated Timber (CLT) to Enhance the Rolling Shear Strength of CLT (CLT의 rolling shear 향상을 위한 hybrid cross laminated timber 연구 동향)

  • YANG, Seung Min;LEE, Hwa Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.336-359
    • /
    • 2021
  • In this study, hybrid CLT research and development trends were analyzed to improve the low rolling shear strength of CLT, a large wooden panel used in high-rise wooden buildings. Through this, basic data that can be used in research and development directions for localization of CLT were prepared. As a way to improve the low rolling shear strength, the use of hardwood lamina, the change of the lamina arrangement angle, and the use of structural composite materials are mainly used. Rolling shear strength and shear modulus of hardwood lamina are more than twice as high as softwood lamina. It confirmed that hardwoods can be used and unused species can be used. Rolling shear strength 1.5 times, shear modulus 8.3 times, bending stiffness 4.1 times improved according to the change of the layer arrangement angle, and the CLT strength was confirmed by reducing the layer arrangement angle. Structural wood-based materials have been improved by up to 1.35 times MOR, 1.5 times MOE, and 1.59 times rolling shear strength when used as laminas. Block shear strength between the layer materials was also secured by 7.0 N/mm2, which is the standard for block shear strength. Through the results of previous studies, it was confirmed that the strength performance was improved when a structural wood based materials having a flexural performance of MOE 7.0 GPa and MOR 40.0 MPa or more was used. This was determined based on the strength of layered materials in structural wood-based materials. The optimal method for improving rolling shear strength is judged to be the most advantageous application of structural wood based materials with strength values according to existing specifications. However, additional research is needed on the orientation of CLT lamina arrangement according to the fiber arrangement of structural wood-based materials, and the block shear strength between lamina materials.

Rock Slope Stability Investigations Conducted on the Road Cut in Samrangjin-Miryang Area (삼량진-밀양 지역에 위치한 도로 절취사면에 대한 사면안정 연구)

  • Um Jeong-Gi;Kang Taeseung;Hwang Jin Yeon
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.305-317
    • /
    • 2005
  • This study addresses the preliminary results of rock slope stability analyses including hazard assessments for slope failure conducted on the selected sections of rural road cut slope which are about 4 km long. The study area is located in the Mt. Chuntae northeast of Busan and mainly composed of Cretaceous rhyolitic ash-flow tuff', fallout tuff, rhyolitc and andesite. The volcanic rock mass in the area has a number of discontinuities that produce a potentially unstable slope, as the present cut slope is more than 70 degrees in most of the slope sections. Discontinuity geometry data were collected at selected 8 scanline sections and analyzed to estimate important discontinuity geometry parameters to perform rock slope kinematic and block theory analyses. Kinematic analysis for plane sliding has resulted in maximum safe slope angles greater than $65^{\circ}$ for most of the discontinuities. For most of the wedges, maximum safe cut slope angles greater than $45^{\circ}$ were obtained. Maximum safe slope angles greater than 80" were obtained fur most of the discontinuities in the toppling case. The block theory analysis resulted in the identification of potential key blocks (type II) in the SL4, SL5, SL6 and SL8 sections. The chance of sliding taking place through a type ll block under a combined gravitational and external loading is quite high in the investigated area. The results support in-field observations of a potentially unstable slope that could become hazardous under external forces. The results obtained through limit equilibrium slope stability analyses show how a stable slope can become an unstable slope as the water pressure acting on joints increases and how a stable slope under Barton's shear strength criterion can fail as the worst case scenario of using Mohr-Coulomb criterion.

Pressure Sensitive Adhesion Performances of SIS/SBS based UV-curable Pressure Sensitive Adhesives using Thiol-ene Reaction (Thiol-ene 반응을 이용한 UV경화형 SIS/SBS계 점착제의 점착물성)

  • Lim, Dong-Hyuk;Do, Hyun-Sung;Kim, Hyun-Joong;Yoon, Goan-Hee;Bang, Jung-Suk
    • Journal of Adhesion and Interface
    • /
    • v.6 no.3
    • /
    • pp.19-25
    • /
    • 2005
  • Synthetic rubber based pressure-sensitive adhesives (PSAs) usually containing SIS or SBS block copolymer, tackifier, plasticizer, and other additives are now widely used on various applications. As these PSAs are physically crosslinked and can be applied without the use of solvent, they are thermally processable and environmentally friendly. However these PSAs cannot be used in high temperature applications and in applications where solvent and chemical resistance properties are required. We developed the PSA adding UV curable system, such as thiol-ene system, to increase adhesion properties at elevated temperature. The adhesion properties such as probe tack, peel strength, shear adhesion failure temperature (SAFT) were evaluated. The probe tack test was conducted with varying probe materials and coating thickness of PSAs. Using the contact angle, the surface property of the cured PSAs was also observed.

  • PDF

Analytical Study of Net Section Fracture in Special Concentrically Braced Frames (중심가새골조의 순단면 파단에 관한 해석적 연구)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Failure modes result in fracture or tearing, which may cause deterioration of resistance and reduction of inelastic deformation capacity. The potential failure modes for Special Concentrically Braced Frames (SCBFs) include fracture or tearing of the brace, net section fracture of the brace or gusset plate, fracture of the gusset plate welds, shear fracture of the bolts, block shear, excessive bolt bearing deformation, and buckling of the gusset plate. HSS tubular braces are commonly used in SCBFs, and net section fracture of the tubular brace may also occur through the brace net section at the end of the slot cut into the tube to slip over the gusset plate. This failure mode is categorized as a tension failure mode, and may cause dramatic loss of resistance and brittle behavior. Net section reinforcement is required according to AISC design specifications (AISC 2001). In this paper, the need to reinforce the net section area was discussed. Initially, the results of the net section fracture tests done by the University of California in Berkeley were presented with the modeling of these tests using FE models. To investigate the possibility of net section fracture in an actual frame, the slot end hole model was adapted to the frame FE model, and alternate near-fault histories were applied with tension-dominated cycles, since previous analyses showed that loading history was the most critical factor in net section fracture. The need for this reinforcement (cover plate) and the tension-dominated near-fault history were investigated.