• Title/Summary/Keyword: 블로우업

Search Result 3, Processing Time 0.018 seconds

Behavior and Design of Terminal Joint Width between Post-Tensioned Concrete Pavement and Jointed Concrete Pavement under Temperature Changes (온도변화에 따른 PTCP와 JCP 접속부 줄눈 폭 변화와 설계 방안)

  • Kim, Dong-Ho;Lee, Bong-Hak;Kim, Seong-Min;Park, Seong-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.223-228
    • /
    • 2011
  • The initial joint width design of the terminal joint between post-tensioned concrete pavement (PTCP) and jointed concrete pavement (JCP) was studied in this research. The joint width between PTCP and JCP directly affects noise and ride quality. If the initial joint width is very large, noise increases and ride quality decreases. If the initial joint width is very small, on the other hand, under high temperatures, PTCP slabs can blow up, or failures near the joint can occur due to excessive compressive stresses. The terminal joint width behavior between PTCP and JCP near Jumunjin at Donghae expressway under temperature changes was measured in August and November 2010 and the data was analyzed. From this study, the design methodology of the optimal initial terminal joint width was proposed.

Joint Width Design for Post-Tensioned Concrete Pavement (포스트텐션 콘크리트 포장의 줄눈 폭 설계)

  • Kim, Dong-Ho;Kil, Yong-Su;Kim, Jin-Woung;Yun, Kyeong-Ku
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • In post-tensioned concrete pavement(PTCP), one of the most important design variables is the initial joint width, in addition to the tensioning spacing. The joint width between PTCP slabs directly affects noise and ride quality. If the joint width is too wide, noise increases and ride quality decreases. If the initial joint width is too narrow, on the other hand, under high temperature, PTCP slabs can blow up, or failures near the joint can occur due to excessive compressive stresses. This study was conducted to determine the optimal initial joint width of PTCP and to investigate the joint width behavior under temperature changes. The experiments were performed using one-year-old PTCP slabs. The concrete temperatures were measured using the temperature measurement sensors installed at various depths. The joint widths were measured using vernier-calipers at different times of a day and the relationship between the joint width and temperature was analyzed. From this study, the design methodology to determine the optimal initial joint width of PTCP could be proposed.

A Study on the Reduction of Temperature Damage in Concrete Pavement (콘크리트 포장에서 발생하는 온도피해 저감에 관한 연구)

  • Jae-Don Kim;Il-Young Jang
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.305-312
    • /
    • 2023
  • Purpose: Although the damage caused by abnormal temperatures is extensive, blow-up or black ice is typical in concrete structures. In this study, PCM with high phase change energy was mixed with concrete to reduce temperature damage to concrete pavement. Method: In order to reduce temperature damage to low temperatures and high temperatures, capsule-type PCM with phase change temperatures of 4.5℃ and 44℃ was replaced by 10%, 30%, and 50%, and thermal performance experiments and compressive strength experiments were conducted using thermocouples and variable chambers. Result: As a result of the thermal performance experiment, it was found that the incorporation of PCM improves temperature resistance by up to 25% or more, and increases thermal resistance at all temperatures with high specific heat when substituted in large amounts. As a result of the compression strength experiment, a substitution of 30% or more resulted in a decrease in the compression strength, and a large strength difference was shown based on the phase change temperature of the PCM. Conclusion: The incorporation of PCMs has been shown to increase the thermal performance of concrete, with the greatest increase in thermal performance near the phase change temperature of PCM. In addition, a small strength reduction of 10% to 20% occurs at the highest substitution rate of 50% substitution, so there is no significant problem with usability, and additional PCM substitution is expected to improve thermal performance.