• 제목/요약/키워드: 블레이드 요소모멘텀 이론

검색결과 8건 처리시간 0.021초

피치각 제어형 수평축 조류 터빈의 형상설계 및 출력계수 비교 (Geometry Design of a Pitch Controlling Type Horizontal Axis Turbine and Comparison of Power Coefficients)

  • 박훈철;트롱 쾅 트리;판 레 쾅;고진환;이광수;레 쾅 투엔;강태삼
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권3호
    • /
    • pp.167-173
    • /
    • 2014
  • 본 연구에서는, 블레이드 요소-모멘텀 이론을 바탕으로, 최대 출력계수를 갖는 직경 80 cm의 실험실용 수평축 조류 터빈의 형상을 제시하고, 블레이드 피치각이 변할 때 출력계수의 변화 경향을 조사하였다. 또한 ANSYS-Fluent를 이용한 전산유체해석을 실시하여, 주어진 블레이드 피치각에 대하여 블레이드 요소-모멘텀 이론으로 계산한 출력계수를 검증하였다. 전산유체해석에는 계산 영역의 직경과 길이를 조류 터빈 반경의 15배로 하였고, 계산 영역의 경계에는 열린 경계조건을 인가하였다. 블레이드 요소-모멘텀 이론과 전산유체해석으로 계산한 조류 터빈의 최대 출력계수 약 48%로 서로 잘 일치하였다. 블레이드 피치각을 증가한 경우에는 두 방법으로 산출한 출력계수가 모두 감소하는 경향을 보였고, 그 값들도 서로 유사하였다. 이로부터, 블레이드 요소-모멘텀 이론을 기반으로 설계한 조류 터빈 형상 및 다양한 조건에서 대한 출력계수의 신뢰성을 확인하였다.

모멘텀 소스 방법을 이용한 로터-기체간의 간섭작용 해석 (Aerodynamic Simulation of Rotor-Airframe Interaction by the Momentum Source Method)

  • 김영화;박승오
    • 한국항공우주학회지
    • /
    • 제37권2호
    • /
    • pp.113-120
    • /
    • 2009
  • 로터-기체 사이의 간섭작용을 정확하게 계산하기 위해서는 로터의 회전을 사실적으로 모사할 수 있는 로터-기체 결합형상의 Navier-Stokes 해석이 필요하다. 하지만 회전하는 로터를 포함한 전기체를 해석할 경우 격자가 증가함에 따라 계산 비용과 시간이 증가된다. 모멘텀 소스 방법은 로터를 디스크 격자에 모멘텀 소스로 대체하여 시간 평균된 로터-기체의 간섭작용을 해석하므로 비교적 경제적이면서도 정확한 결과를 얻을 수 있다. 일반적으로 모멘텀 소스 값은 블레이드 요소 이론을 이용하여 구하지만 결과의 정확성이 떨어진다. 따라서 본 연구에서는 모멘텀 소스를 Moving mesh 방법을 이용한 Navier-Stokes 계산을 통해 구하여 정확성을 높였다. 이 모멘텀 소스 값을 이용하여 정상해석을 하여 실험결과와 비교하였다. 기존의 모멘텀 소스 방법은 시간 평균된 유동장만 관찰할 수 있으므로 비정상 유동장을 관찰하기 위하여 비정상 로터-기체 간섭작용 해석 모델을 개발하여 실험결과와 비교해 보았다. 검증을 위하여 간단한 형상인 Georgia Tech 형상을 사용하여 실험결과와 비교해 보았으며 본 연구의 계산결과가 실험결과와 잘 일치하는 것을 볼 수 있었다.

수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무 (Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow)

  • 김진;강승희;유기완
    • 한국항공우주학회지
    • /
    • 제44권5호
    • /
    • pp.391-398
    • /
    • 2016
  • 본 연구에서는 난류 유입조건을 갖는 수평축 풍력터빈 블레이드의 공력 하중에 대해 초점을 맞추어 연구하였다. 난류모델은 풍속과 방향에 대한 변동을 포함하며, 그 특성은 난류 강도와 표준편차로 표현된다. IEC61400-1에서는 정상 난류 모델과 정상 풍속 측면도에 대해서 피로해석을 수행하도록 규정하고 있다. 이를 위해 공력 최적설계 절차를 통해 얻어낸 MW급 수평축 풍력터빈 블레이드 허브와 저속 회전축에 대한 공력하중 해석을 수행한다. 공력하중 성분은 수치적인 절차를 통해 얻어내며 이를 블레이드 회전 특성을 고려하여 해석적으로 검토하였다. 난류 조건을 고려했을 때의 최대 추력과 토크의 변동치는 난류 조건을 고려하지 않았을 때의 값들에 비해 5~8 배 더 큰 값을 보였다. 따라서 난류 조건을 반영한 하중 해석은 풍력터빈 블레이드의 구조설계에 있어서 필수적임을 확인하였다.

풍력 발전시스템 피치 제어에 관한 연구 (Pitch Control for Wind Turbine Generator System)

  • 박종혁;노태수;문정희;김지언
    • 한국항공우주학회지
    • /
    • 제34권12호
    • /
    • pp.25-34
    • /
    • 2006
  • 본 논문에서는 풍력 발전시스템의 피치 제어 알고리즘 설계 기법을 검토하고 비선형 시뮬레이션을 수행한 결과를 제시한다. 풍력 발전시스템을 다몸체 시스템으로 간주하고 로터 블레이드에 작용하는 공력 및 토크 계산을 위해 블레이드 요소 및 모멘텀 이론을 근거로 공력 모델링을 수행하였다. 제어기 설계를 위해, 풍력 발전시스템은 서로 상대적으로 구속한 체 운동하는 1 자유도 시스템으로 가정하여 선형 방정식을 수립하고, 로터 회전속도를 제어하기 위해 PID 제어기를 설계하였다. FORTRAN 언어를 기반으로 작성된 비선형 시뮬레이터 WINSIM을 이용하여 다양한 풍속 시나리오와 운전 방식에서 제어기의 성능을 시뮬레이션을 통해 확인하였다.

요 상태에서 NREL Phase VI 로터의 허브 중심 하중 예측 (Loads of NREL Phase VI Rotor at Hub in Yawed Conditions)

  • 유기완
    • 한국항공우주학회지
    • /
    • 제47권12호
    • /
    • pp.841-847
    • /
    • 2019
  • 본 연구에서는 요 오차가 있는 상태에서의 수평축 풍력터빈 로터에 작용하는 시간에 따른 6분력 하중변동을 로터 허브에 중심을 둔 회전 및 비회전 좌표계에 대해서 수치해석 하였다. 수치해석을 위한 모형은 설계 사양이 상세히 공개된 20 kW급의 NREL Phase VI 로터로 선택하였으며, 설계 풍속 구간에 대해 요 및 전도 모멘트를 중점적으로 분석하였다. 해석을 위한 방법은 비정상 블레이드 요소이론을 적용하였으며, 그 방법을 이용하여 개발된 프로그램의 6분력 하중에 대한 수치해석 결과는 NREL의 FAST 프로그램의 해석 결과와 비교하여 검증을 완료하였다. 하중 해석 결과를 토대로 요 작동 상태인 수평축 풍력터빈 시스템의 요 및 전도 모멘트는 요 부속 장치의 사양 결정 및 지지부위의 기초 설계를 위해 중요한 기본 정보로 활용될 것으로 기대된다.

Dual-Rotor 풍력 발전 시스템 성능 해석 및 피치 제어에 관한 연구 (Performance Analysis and Pitch Control of Dual-Rotor Wind Turbine Generator System)

  • 조윤모;노태수;정성남;김지언
    • 한국항공우주학회지
    • /
    • 제33권7호
    • /
    • pp.40-50
    • /
    • 2005
  • 본 논문에서는 이중 로터 풍력 발전 시스템에 대한 모델링 및 성능 예측 결과를 제시하였다. 공력 모델은 블레이드 요소 및 모멘텀 이론에 근거하였으며, 시스템 동역학 모델은 다몸체 역학을 적용하였다. 이중 로터 풍력 발전 시스템의 정상 상태는 물론 이중 여자 유도 발전기를 탑재한 발전 시스템에 대하여 풍속 변화에 따른 과도 응답을 분석하였고, 로터 회전수 및 발전 출력 제어를 위하여 주 및 보조 로터의 피치각 제어 전략의 도출 및 비선형 시뮬레이션 결과를 제시하였다.

다물체 동역학 시뮬레이션 기반 5MW급 해상풍력발전시스템의 상부구조물에 대한 동적 응답 해석 (Dynamic Response Analysis for Upper Structure of 5MW Offshore Wind Turbine System based on Multi-Body Dynamics Simulation)

  • 이강수;임종순;이장용;송창용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제16권4호
    • /
    • pp.239-247
    • /
    • 2013
  • 최근 화석연료의 고갈과 환경오염으로 인하여 해상풍력에너지와 같은 신재생 에너지에 대한 관심이 높아지고 있다. 본 연구에서는 범용 동역학해석 프로그램인 MSC.ADAMS를 이용하여 공력하중 및 전기 발전기 토오크를 결정하기 위한 테브난(Thevenin) 방정식이 고려된 해상풍력발전기의 다물체 동역학 해석 기법을 검토하였다. 해석대상으로 고려한 시스템은 5MW급 해상풍력발전기이며, 3개의 블레이드가 수평축 방향에서 역풍을 받아 전기를 생산하는 수평축 풍력발전 형태이다. 블레이드에 작용하는 공력하중은 블레이드 요소 모멘텀 이론을 기반으로 일반화된 동적 웨이크를 고려할 수 있도록 개발된 AeroDyn 프로그램으로부터 산출하였다. 해상풍력발전기의 주요 연결부에서의 동적하중과 토오크 특성이 실제 현상과 유사하게 산출될 수 있도록 하기 위하여, 다물체 동역학 모델 상에 블레이드와 타워는 실제 구조 특성치를 고려한 유연체 모델링을 적용하였다.

FAST, GH Bladed 및 CFD기법을 이용한 5MW 해상풍력터빈 시스템 설계하중조건 해석 및 비교 (Design Load Case Analysis and Comparison for a 5MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method)

  • 김기하;김동현;곽영섭;김수현
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.14-21
    • /
    • 2015
  • Design lifetime of a wind turbine is required to be at least 20 years. The most important step to ensure the deign is to evaluate the loads on the wind turbine as accurately as possible. In this study, extreme design load of a offshore wind turbine using Garrad Hassan (GH) Bladed and National Renewable Energy Laboratory (NREL) FAST codes are calculated considering structural dynamic loads. These wind turbine aeroelastic analysis codes are high efficiency for the rapid numerical analysis scheme. But, these codes are mainly based on the mathematical and semi-empirical theories such as unsteady blade element momentum (UBEM) theory, generalized dynamic wake (GDW), dynamic inflow model, dynamic stall model, and tower influence model. Thus, advanced CFD-dynamic coupling method is also applied to conduct cross verification with FAST and GH Bladed codes. If the unsteady characteristics of wind condition are strong, such as extreme design wind condition, it is possible to occur the error in analysis results. The NREL 5 MW offshore wind turbine model as a benchmark case is practically considered for the comparison of calculated designed loads. Computational analyses for typical design load conditions such as normal turbulence model (NTM), normal wind profile (NWP), extreme operation gust (EOG), and extreme direction change (EDC) have been conducted and those results are quantitatively compared with each other. It is importantly shown that there are somewhat differences as maximum amount of 18% among numerical tools depending on the design load cases.