• Title/Summary/Keyword: 블레이드 손상

Search Result 68, Processing Time 0.021 seconds

Wind Turbine Blade Damage Analysis using Fluid-Structure Interaction (유체-고체 연성해석을 통한 풍력 터빈 블레이드 손상률 해석)

  • Kim, J.H.;Lee, J.H.;Kim, C.W.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.560-564
    • /
    • 2008
  • 풍력발전에 사용하는 풍력터빈의 블레이드의 적어도 20년 이상의 설계수명이 요구된단. 블레이드는 바람에 의한 압력, 지지대 구조에 의해서 가해지는 힘과 모멘트에 의해 블레이드에 변형이 가해진다. 특히 바람에 의해 블레이드는 연속적인 하중을 받아서 재료를 손상시킨다. 본 연구에서는 블레이드와 허브로 구성된 모델을 이용하여, 전산유체해석을 일차적으로 수행하여 블레이드 주변의 압력분포를 구하였다. 계산된 압력을 이용하여 다음 단계로 유한요소해석을 수행하여 블레이드 재료에 발생하는 응력을 계산하여 피로해석을 수행하였다. 피로해석을 통해 재료에 미치는 손상률을 구하였다. 다양한 블레이드 피치 각도과 바람의 속도에 따라 해석결과를 비료 분석하였다.

  • PDF

Statistical Blade Angular Velocity Information-based Wind Turbine Fault Diagnosis Monitoring System (블레이드 각속도 통계 정보 기반 풍력 발전기 고장 진단 모니터링 시스템)

  • Kim, Byoungjin;Kang, Suk-Ju;Park, Joon-Young
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.619-625
    • /
    • 2016
  • In this paper, we propose a new fault diagnosis monitoring system using gyro sensor-based angular velocity calculation for blades of the wind turbine system. First, the proposed system generates the angular velocity dataset for the rotation speed of the normal blade. Using the dataset, we estimate and evaluate the state of blades for the wind turbine by comparing the current state with the pre-calculated normal state. In the experimental results, the angular velocity of the normal state was higher than $360^{\circ}/s$ while that of the damaged blades was lower than $360^{\circ}/s$ and the standard deviation of the angular velocity was significantly increased.

Evaluation of Fatigue Damage for Wind Turbine Blades Using Acoustic Emission (음향방출(AE)을 이용한 풍력 블레이드의 피로손상 평가)

  • Jee, Hyun-Sup;Ju, No-Hoe;So, Cheal Ho;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.179-184
    • /
    • 2015
  • In this study, the flap fatigue test of a 48 m long wind turbine blade was performed for 1 million cycles to evaluate the characteristics of acoustic emission signals generated from fatigue damage of the wind blades. As the number of hits and total energy continued to increase during the first 0.6 million cycles, blade damage was constant. The rise-time result showed that the major aspects of damage were initiation and propagation of matrix cracks. In addition, the signal analysis of each channel showed that the most seriously damaged sections were the joint between the skin and spar, 20 m from the connection, and the spot of actual damage was observable by visual inspection. It turned out that the event source location was related to the change in each channel's total energy. It is expected that these findings will be useful for the optimal design of wind turbine blades.

Damage Monitoring for Wind Turbine Blade using Impedance Technique (임피던스 기법을 이용한 풍력 블레이드 손상 모니터링)

  • Huh, Yong-Hak;Kim, Jongil;Hong, Seonggu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.452-458
    • /
    • 2013
  • Impedance based monitoring technique was investigated to evaluate the damage occurring in wind turbine blade. In this study, PVDF film piezo sensors were patched on the 10 kW wind turbine blade, and impedance was measured over the frequency range of 1~200 MHz under fatigue loading. With applying fatigue loads on the blade, change in maximum deflection of the blade and local strain values could be obtained from the strain gages attached on the blade, and difference of the impedance signatures was also observed. From these data, it could be found that local damage or geometrical change in the blade structure happened. To quantitatively compare the impedance signature patterns, a statistical algorithm, scalar damage metric M was used. It was calculated from the impedance signatures considering fatigue loads and location of the sensors. The metric values were compared to correlate the metrics with damage in the blade.

Fatigue Life Evaluation of Fiber Reinforced Composite Rotor Blades Considering Impact Damages (충격손상을 고려한 섬유강화 복합재 로터 블레이드의 피로수명 평가)

  • Kee, Young-Jung;Park, Jae-Hun;Kim, Sung-Man;Kim, Gi-Hun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.22-30
    • /
    • 2020
  • Composite rotor blades for rotorcraft have an intrinsic vulnerability to foreign object impact from its inherent structural characteristics of insufficient strength in the thickness direction, which may easily lead to internal structure damage. Therefore, defects and strength reducing effects caused by foreign object impact should be considered in fatigue evaluation of composite blades. For this purpose, the flaw tolerant safe-life and fail-safe concepts were adopted in fatigue evaluation since 1980s, and recently those concepts have been replaced by the damage tolerance concept. In this paper, the relevant standards for fatigue evaluation are analyzed focusing on fiber reinforced composite rotor blades used in rotorcraft. In addition, fatigue evaluation procedure of composite blades considering impact damages is proposed by reviewing the practices implemented through domestic development projects.

Fatigue Damage Analysis of a Low-Pressure Turbine Blade (저압터빈 블레이드의 피로손상 해석)

  • Youn, Hee Chul;Woo, Chang Ki;Hwang, Jai Kon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.713-720
    • /
    • 2015
  • The sizes of the final blades of a low-pressure (LP) steam turbine have been getting larger for the development of high-capacity power plants. They are also larger than the other blades in the same system. As a result, fatigue damage is caused by a large centrifugal force and a low natural frequency of the blade. Recently, many failure cases have been reported due to repeated turbine startups and their prolonged use. In this study, the causes and mechanism of failure of a LP turbine blade were analyzed by using a finite element method to calculate the centrifugal force, the natural frequency of a stress-stiffening effect, and the harmonic response. It was observed that the expected fatigue damage position matched the real crack position at the airfoil's leading edge, and an equivalence fatigue limit approached a notch fatigue limit.

Damage Analysis for Last-Stage Blade of Low-Pressure Turbine (저압터빈 최종단 블레이드 손상해석)

  • Song, Gee Wook;Choi, Woo Sung;Kim, Wanjae;Jung, Nam Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1153-1157
    • /
    • 2013
  • A steam turbine blade is one of the core parts in a power plant. It transforms steam energy into mechanical energy. It is installed on the rim of a rotor disk. Many failure cases have been reported at the final stage blades of a low-pressure (LP) turbine that is cyclically loaded by centrifugal force because of the repeated startups of the turbine. Therefore, to ensure the safety of an LP steam turbine blade, it is necessary to investigate the fatigue strength and life. In this study, the low cycle fatigue life of an LP steam turbine blade is evaluated based on actual damage analysis. To determine the crack initiation life of the final stage of a steam turbine, Neuber's rule is applied to elastic stresses by the finite element method to calculate the true strain amplitude. It is observed that the expected life and actual number of starts/stops of the blade were well matched.

Damage Detection Method of Wind Turbine Blade Using Acoustic Emission Signal Mapping (음향방출신호 맵핑을 이용한 풍력 블레이드 손상 검출 기법)

  • Han, Byeong-Hee;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.68-76
    • /
    • 2011
  • Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. Therefore, it is required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. In this study, a new damage location method has been proposed by using signal mapping algorithm, and an experimental verification is conducted by using small wind turbine blade specimen; a part of 750 kW real blade. The results show that this new signal mapping method has high advantages such as a flexibility for sensor location, improved accuracy, high detectability. The newly proposed method was compared with traditional AE source location method based on arrival time difference.

Source Location on Full-Scale Wind Turbine Blade Using Acoustic Emission Energy Based Signal Mapping Method (음향방출 에너지 기반 신호 맵핑 기법을 이용한 실물 풍력 블레이드 손상 검출)

  • Han, Byeong-Hee;Yoon, Dong-Jin;Huh, Yong-Hak;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2013
  • Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. In this study, the activities of AE signals generated from external artificial sources was evaluated and located by new developed signal mapping source location method and this test is conducted by 750 kW full-scale blade. And a new source location method was applied to assess the damage in the wind turbine blade during step-by-step static load test. In this static loading test, we have used a full scale blade of 100 kW in capacity. The results show that the acoustic emission activities give a good agreement with the stress distribution and damage location in the blade. Finally, the applicability of the new source location method was confirmed by comparison of the result of source location and experimental damage location.

풍력발전 블레이드 제작 및 사용에서의 신뢰성 기술

  • Heo, Yong-Hak
    • Journal of the KSME
    • /
    • v.54 no.7
    • /
    • pp.28-33
    • /
    • 2014
  • 최근 풍력에너지 발전기술이 해상 풍력 및 대형 풍력으로 천이되어 감에 따라 더 향상된 신뢰성 기술을 요구하고 있고, 풍력 블레이드는 풍력발전시스템에서 고장 빈도가 비교적 낮지 않고, 고장 발생 시 심각도가 상대적으로 높아 신뢰성을 고려해야 하는 부품이다. 블레이드 제작 생산 과정과 사용 중에 발생하는 손상 및 결함은 신뢰성의 심각성에 큰 영향을 미치고 있어 본 기술에서는 블레이드에서 발생할 수 있는 결함 유형, 결함을 탐지하는 기술 그리고 신뢰성을 평가하는 시험/평가 기술에 대하여 소개하고자 한다.

  • PDF